File | /opt/wise/lib/perl5/5.10.0/Math/Complex.pm | Statements Executed | 40 | Total Time | 0.007931 seconds |
Calls | P | F | Exclusive Time |
Inclusive Time |
Subroutine | |
---|---|---|---|---|---|---|
1 | 1 | 1 | 4.6e-5 | 4.6e-5 | Math::Complex:: | atan2 |
1 | 1 | 1 | 1.3e-5 | 1.3e-5 | Math::Complex:: | sqrt |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | BEGIN |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | Im |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | Re |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _cannot_make |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _cartesian |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _conjugate |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _divbyzero |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _divide |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _emake |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _ip2 |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _logofzero |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _make |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _minus |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _multiply |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _negate |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _numeq |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _plus |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _polar |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _power |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _rootbad |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _set_cartesian |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _set_polar |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _spaceship |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _stringify |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _stringify_cartesian |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _stringify_polar |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _theta |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _update_cartesian |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | _update_polar |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | abs |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acos |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acosec |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acosech |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acosh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acot |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acotan |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acotanh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acoth |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acsc |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | acsch |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | arg |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | asec |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | asech |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | asin |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | asinh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | atan |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | atanh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cbrt |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cos |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cosec |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cosech |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cosh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cot |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cotan |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cotanh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | coth |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cplx |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | cplxe |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | csc |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | csch |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | display_format |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | emake |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | exp |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | i |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | ln |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | log |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | log10 |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | logn |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | make |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | new |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | rho |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | root |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | sec |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | sech |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | sin |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | sinh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | tan |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | tanh |
0 | 0 | 0 | 0 | 0 | Math::Complex:: | theta |
Line | Stmts. | Exclusive Time | Avg. | Code |
---|---|---|---|---|
1 | # | |||
2 | # Complex numbers and associated mathematical functions | |||
3 | # -- Raphael Manfredi Since Sep 1996 | |||
4 | # -- Jarkko Hietaniemi Since Mar 1997 | |||
5 | # -- Daniel S. Lewart Since Sep 1997 | |||
6 | # | |||
7 | ||||
8 | package Math::Complex; | |||
9 | ||||
10 | 3 | 0.00013 | 4.2e-5 | use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf); # spent 82µs making 1 call to vars::import |
11 | ||||
12 | 1 | 1.0e-6 | 1.0e-6 | $VERSION = 1.37; |
13 | ||||
14 | BEGIN { | |||
15 | 5 | 0.00010 | 2.0e-5 | unless ($^O eq 'unicosmk') { |
16 | local $!; | |||
17 | # We do want an arithmetic overflow, Inf INF inf Infinity:. | |||
18 | 1 | 3.1e-5 | 3.1e-5 | undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i; |
19 | local $SIG{FPE} = sub {die}; | |||
20 | my $t = CORE::exp 30; | |||
21 | $Inf = CORE::exp $t; | |||
22 | EOE | |||
23 | if (!defined $Inf) { # Try a different method | |||
24 | undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i; | |||
25 | local $SIG{FPE} = sub {die}; | |||
26 | my $t = 1; | |||
27 | $Inf = $t + "1e99999999999999999999999999999999"; | |||
28 | EOE | |||
29 | } | |||
30 | } | |||
31 | $Inf = "Inf" if !defined $Inf || !($Inf > 0); # Desperation. | |||
32 | 1 | 2.6e-5 | 2.6e-5 | } |
33 | ||||
34 | 3 | 0.00027 | 9.1e-5 | use strict; # spent 10µs making 1 call to strict::import |
35 | ||||
36 | 1 | 1.1e-5 | 1.1e-5 | my $i; |
37 | 1 | 1.0e-6 | 1.0e-6 | my %LOGN; |
38 | ||||
39 | # Regular expression for floating point numbers. | |||
40 | # These days we could use Scalar::Util::lln(), I guess. | |||
41 | 1 | 2.2e-5 | 2.2e-5 | my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; |
42 | ||||
43 | 1 | 2.0e-6 | 2.0e-6 | require Exporter; |
44 | ||||
45 | 1 | 8.0e-6 | 8.0e-6 | @ISA = qw(Exporter); |
46 | ||||
47 | 1 | 7.0e-6 | 7.0e-6 | my @trig = qw( |
48 | pi | |||
49 | tan | |||
50 | csc cosec sec cot cotan | |||
51 | asin acos atan | |||
52 | acsc acosec asec acot acotan | |||
53 | sinh cosh tanh | |||
54 | csch cosech sech coth cotanh | |||
55 | asinh acosh atanh | |||
56 | acsch acosech asech acoth acotanh | |||
57 | ); | |||
58 | ||||
59 | 1 | 1.0e-5 | 1.0e-5 | @EXPORT = (qw( |
60 | i Re Im rho theta arg | |||
61 | sqrt log ln | |||
62 | log10 logn cbrt root | |||
63 | cplx cplxe | |||
64 | atan2 | |||
65 | ), | |||
66 | @trig); | |||
67 | ||||
68 | 1 | 2.0e-6 | 2.0e-6 | my @pi = qw(pi pi2 pi4 pip2 pip4); |
69 | ||||
70 | 1 | 2.0e-6 | 2.0e-6 | @EXPORT_OK = @pi; |
71 | ||||
72 | 1 | 1.5e-5 | 1.5e-5 | %EXPORT_TAGS = ( |
73 | 'trig' => [@trig], | |||
74 | 'pi' => [@pi], | |||
75 | ); | |||
76 | ||||
77 | use overload | |||
78 | '+' => \&_plus, # spent 1.12ms making 1 call to overload::import | |||
79 | '-' => \&_minus, | |||
80 | '*' => \&_multiply, | |||
81 | '/' => \&_divide, | |||
82 | '**' => \&_power, | |||
83 | '==' => \&_numeq, | |||
84 | '<=>' => \&_spaceship, | |||
85 | 'neg' => \&_negate, | |||
86 | '~' => \&_conjugate, | |||
87 | 'abs' => \&abs, | |||
88 | 'sqrt' => \&sqrt, | |||
89 | 'exp' => \&exp, | |||
90 | 'log' => \&log, | |||
91 | 'sin' => \&sin, | |||
92 | 'cos' => \&cos, | |||
93 | 'tan' => \&tan, | |||
94 | 'atan2' => \&atan2, | |||
95 | 3 | 0.00722 | 0.00241 | '""' => \&_stringify; |
96 | ||||
97 | # | |||
98 | # Package "privates" | |||
99 | # | |||
100 | ||||
101 | 1 | 1.0e-6 | 1.0e-6 | my %DISPLAY_FORMAT = ('style' => 'cartesian', |
102 | 'polar_pretty_print' => 1); | |||
103 | 1 | 1.0e-6 | 1.0e-6 | my $eps = 1e-14; # Epsilon |
104 | ||||
105 | # | |||
106 | # Object attributes (internal): | |||
107 | # cartesian [real, imaginary] -- cartesian form | |||
108 | # polar [rho, theta] -- polar form | |||
109 | # c_dirty cartesian form not up-to-date | |||
110 | # p_dirty polar form not up-to-date | |||
111 | # display display format (package's global when not set) | |||
112 | # bn_cartesian | |||
113 | # bnc_dirty | |||
114 | # | |||
115 | ||||
116 | # Die on bad *make() arguments. | |||
117 | ||||
118 | sub _cannot_make { | |||
119 | die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; | |||
120 | } | |||
121 | ||||
122 | sub _make { | |||
123 | my $arg = shift; | |||
124 | my ($p, $q); | |||
125 | ||||
126 | if ($arg =~ /^$gre$/) { | |||
127 | ($p, $q) = ($1, 0); | |||
128 | } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { | |||
129 | ($p, $q) = ($1 || 0, $2); | |||
130 | } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { | |||
131 | ($p, $q) = ($1, $2 || 0); | |||
132 | } | |||
133 | ||||
134 | if (defined $p) { | |||
135 | $p =~ s/^\+//; | |||
136 | $p =~ s/^(-?)inf$/"${1}9**9**9"/e; | |||
137 | $q =~ s/^\+//; | |||
138 | $q =~ s/^(-?)inf$/"${1}9**9**9"/e; | |||
139 | } | |||
140 | ||||
141 | return ($p, $q); | |||
142 | } | |||
143 | ||||
144 | sub _emake { | |||
145 | my $arg = shift; | |||
146 | my ($p, $q); | |||
147 | ||||
148 | if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { | |||
149 | ($p, $q) = ($1, $2 || 0); | |||
150 | } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { | |||
151 | ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); | |||
152 | } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { | |||
153 | ($p, $q) = ($1, 0); | |||
154 | } elsif ($arg =~ /^\s*$gre\s*$/) { | |||
155 | ($p, $q) = ($1, 0); | |||
156 | } | |||
157 | ||||
158 | if (defined $p) { | |||
159 | $p =~ s/^\+//; | |||
160 | $q =~ s/^\+//; | |||
161 | $p =~ s/^(-?)inf$/"${1}9**9**9"/e; | |||
162 | $q =~ s/^(-?)inf$/"${1}9**9**9"/e; | |||
163 | } | |||
164 | ||||
165 | return ($p, $q); | |||
166 | } | |||
167 | ||||
168 | # | |||
169 | # ->make | |||
170 | # | |||
171 | # Create a new complex number (cartesian form) | |||
172 | # | |||
173 | sub make { | |||
174 | my $self = bless {}, shift; | |||
175 | my ($re, $im); | |||
176 | if (@_ == 0) { | |||
177 | ($re, $im) = (0, 0); | |||
178 | } elsif (@_ == 1) { | |||
179 | return (ref $self)->emake($_[0]) | |||
180 | if ($_[0] =~ /^\s*\[/); | |||
181 | ($re, $im) = _make($_[0]); | |||
182 | } elsif (@_ == 2) { | |||
183 | ($re, $im) = @_; | |||
184 | } | |||
185 | if (defined $re) { | |||
186 | _cannot_make("real part", $re) unless $re =~ /^$gre$/; | |||
187 | } | |||
188 | $im ||= 0; | |||
189 | _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; | |||
190 | $self->_set_cartesian([$re, $im ]); | |||
191 | $self->display_format('cartesian'); | |||
192 | ||||
193 | return $self; | |||
194 | } | |||
195 | ||||
196 | # | |||
197 | # ->emake | |||
198 | # | |||
199 | # Create a new complex number (exponential form) | |||
200 | # | |||
201 | sub emake { | |||
202 | my $self = bless {}, shift; | |||
203 | my ($rho, $theta); | |||
204 | if (@_ == 0) { | |||
205 | ($rho, $theta) = (0, 0); | |||
206 | } elsif (@_ == 1) { | |||
207 | return (ref $self)->make($_[0]) | |||
208 | if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); | |||
209 | ($rho, $theta) = _emake($_[0]); | |||
210 | } elsif (@_ == 2) { | |||
211 | ($rho, $theta) = @_; | |||
212 | } | |||
213 | if (defined $rho && defined $theta) { | |||
214 | if ($rho < 0) { | |||
215 | $rho = -$rho; | |||
216 | $theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |||
217 | } | |||
218 | } | |||
219 | if (defined $rho) { | |||
220 | _cannot_make("rho", $rho) unless $rho =~ /^$gre$/; | |||
221 | } | |||
222 | $theta ||= 0; | |||
223 | _cannot_make("theta", $theta) unless $theta =~ /^$gre$/; | |||
224 | $self->_set_polar([$rho, $theta]); | |||
225 | $self->display_format('polar'); | |||
226 | ||||
227 | return $self; | |||
228 | } | |||
229 | ||||
230 | sub new { &make } # For backward compatibility only. | |||
231 | ||||
232 | # | |||
233 | # cplx | |||
234 | # | |||
235 | # Creates a complex number from a (re, im) tuple. | |||
236 | # This avoids the burden of writing Math::Complex->make(re, im). | |||
237 | # | |||
238 | sub cplx { | |||
239 | return __PACKAGE__->make(@_); | |||
240 | } | |||
241 | ||||
242 | # | |||
243 | # cplxe | |||
244 | # | |||
245 | # Creates a complex number from a (rho, theta) tuple. | |||
246 | # This avoids the burden of writing Math::Complex->emake(rho, theta). | |||
247 | # | |||
248 | sub cplxe { | |||
249 | return __PACKAGE__->emake(@_); | |||
250 | } | |||
251 | ||||
252 | # | |||
253 | # pi | |||
254 | # | |||
255 | # The number defined as pi = 180 degrees | |||
256 | # | |||
257 | sub pi () { 4 * CORE::atan2(1, 1) } | |||
258 | ||||
259 | # | |||
260 | # pi2 | |||
261 | # | |||
262 | # The full circle | |||
263 | # | |||
264 | sub pi2 () { 2 * pi } | |||
265 | ||||
266 | # | |||
267 | # pi4 | |||
268 | # | |||
269 | # The full circle twice. | |||
270 | # | |||
271 | sub pi4 () { 4 * pi } | |||
272 | ||||
273 | # | |||
274 | # pip2 | |||
275 | # | |||
276 | # The quarter circle | |||
277 | # | |||
278 | sub pip2 () { pi / 2 } | |||
279 | ||||
280 | # | |||
281 | # pip4 | |||
282 | # | |||
283 | # The eighth circle. | |||
284 | # | |||
285 | sub pip4 () { pi / 4 } | |||
286 | ||||
287 | # | |||
288 | # _uplog10 | |||
289 | # | |||
290 | # Used in log10(). | |||
291 | # | |||
292 | sub _uplog10 () { 1 / CORE::log(10) } | |||
293 | ||||
294 | # | |||
295 | # i | |||
296 | # | |||
297 | # The number defined as i*i = -1; | |||
298 | # | |||
299 | sub i () { | |||
300 | return $i if ($i); | |||
301 | $i = bless {}; | |||
302 | $i->{'cartesian'} = [0, 1]; | |||
303 | $i->{'polar'} = [1, pip2]; | |||
304 | $i->{c_dirty} = 0; | |||
305 | $i->{p_dirty} = 0; | |||
306 | return $i; | |||
307 | } | |||
308 | ||||
309 | # | |||
310 | # _ip2 | |||
311 | # | |||
312 | # Half of i. | |||
313 | # | |||
314 | sub _ip2 () { i / 2 } | |||
315 | ||||
316 | # | |||
317 | # Attribute access/set routines | |||
318 | # | |||
319 | ||||
320 | sub _cartesian {$_[0]->{c_dirty} ? | |||
321 | $_[0]->_update_cartesian : $_[0]->{'cartesian'}} | |||
322 | sub _polar {$_[0]->{p_dirty} ? | |||
323 | $_[0]->_update_polar : $_[0]->{'polar'}} | |||
324 | ||||
325 | sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; | |||
326 | $_[0]->{'cartesian'} = $_[1] } | |||
327 | sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; | |||
328 | $_[0]->{'polar'} = $_[1] } | |||
329 | ||||
330 | # | |||
331 | # ->_update_cartesian | |||
332 | # | |||
333 | # Recompute and return the cartesian form, given accurate polar form. | |||
334 | # | |||
335 | sub _update_cartesian { | |||
336 | my $self = shift; | |||
337 | my ($r, $t) = @{$self->{'polar'}}; | |||
338 | $self->{c_dirty} = 0; | |||
339 | return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; | |||
340 | } | |||
341 | ||||
342 | # | |||
343 | # | |||
344 | # ->_update_polar | |||
345 | # | |||
346 | # Recompute and return the polar form, given accurate cartesian form. | |||
347 | # | |||
348 | sub _update_polar { | |||
349 | my $self = shift; | |||
350 | my ($x, $y) = @{$self->{'cartesian'}}; | |||
351 | $self->{p_dirty} = 0; | |||
352 | return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; | |||
353 | return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), | |||
354 | CORE::atan2($y, $x)]; | |||
355 | } | |||
356 | ||||
357 | # | |||
358 | # (_plus) | |||
359 | # | |||
360 | # Computes z1+z2. | |||
361 | # | |||
362 | sub _plus { | |||
363 | my ($z1, $z2, $regular) = @_; | |||
364 | my ($re1, $im1) = @{$z1->_cartesian}; | |||
365 | $z2 = cplx($z2) unless ref $z2; | |||
366 | my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |||
367 | unless (defined $regular) { | |||
368 | $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); | |||
369 | return $z1; | |||
370 | } | |||
371 | return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |||
372 | } | |||
373 | ||||
374 | # | |||
375 | # (_minus) | |||
376 | # | |||
377 | # Computes z1-z2. | |||
378 | # | |||
379 | sub _minus { | |||
380 | my ($z1, $z2, $inverted) = @_; | |||
381 | my ($re1, $im1) = @{$z1->_cartesian}; | |||
382 | $z2 = cplx($z2) unless ref $z2; | |||
383 | my ($re2, $im2) = @{$z2->_cartesian}; | |||
384 | unless (defined $inverted) { | |||
385 | $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); | |||
386 | return $z1; | |||
387 | } | |||
388 | return $inverted ? | |||
389 | (ref $z1)->make($re2 - $re1, $im2 - $im1) : | |||
390 | (ref $z1)->make($re1 - $re2, $im1 - $im2); | |||
391 | ||||
392 | } | |||
393 | ||||
394 | # | |||
395 | # (_multiply) | |||
396 | # | |||
397 | # Computes z1*z2. | |||
398 | # | |||
399 | sub _multiply { | |||
400 | my ($z1, $z2, $regular) = @_; | |||
401 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |||
402 | # if both polar better use polar to avoid rounding errors | |||
403 | my ($r1, $t1) = @{$z1->_polar}; | |||
404 | my ($r2, $t2) = @{$z2->_polar}; | |||
405 | my $t = $t1 + $t2; | |||
406 | if ($t > pi()) { $t -= pi2 } | |||
407 | elsif ($t <= -pi()) { $t += pi2 } | |||
408 | unless (defined $regular) { | |||
409 | $z1->_set_polar([$r1 * $r2, $t]); | |||
410 | return $z1; | |||
411 | } | |||
412 | return (ref $z1)->emake($r1 * $r2, $t); | |||
413 | } else { | |||
414 | my ($x1, $y1) = @{$z1->_cartesian}; | |||
415 | if (ref $z2) { | |||
416 | my ($x2, $y2) = @{$z2->_cartesian}; | |||
417 | return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |||
418 | } else { | |||
419 | return (ref $z1)->make($x1*$z2, $y1*$z2); | |||
420 | } | |||
421 | } | |||
422 | } | |||
423 | ||||
424 | # | |||
425 | # _divbyzero | |||
426 | # | |||
427 | # Die on division by zero. | |||
428 | # | |||
429 | sub _divbyzero { | |||
430 | my $mess = "$_[0]: Division by zero.\n"; | |||
431 | ||||
432 | if (defined $_[1]) { | |||
433 | $mess .= "(Because in the definition of $_[0], the divisor "; | |||
434 | $mess .= "$_[1] " unless ("$_[1]" eq '0'); | |||
435 | $mess .= "is 0)\n"; | |||
436 | } | |||
437 | ||||
438 | my @up = caller(1); | |||
439 | ||||
440 | $mess .= "Died at $up[1] line $up[2].\n"; | |||
441 | ||||
442 | die $mess; | |||
443 | } | |||
444 | ||||
445 | # | |||
446 | # (_divide) | |||
447 | # | |||
448 | # Computes z1/z2. | |||
449 | # | |||
450 | sub _divide { | |||
451 | my ($z1, $z2, $inverted) = @_; | |||
452 | if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |||
453 | # if both polar better use polar to avoid rounding errors | |||
454 | my ($r1, $t1) = @{$z1->_polar}; | |||
455 | my ($r2, $t2) = @{$z2->_polar}; | |||
456 | my $t; | |||
457 | if ($inverted) { | |||
458 | _divbyzero "$z2/0" if ($r1 == 0); | |||
459 | $t = $t2 - $t1; | |||
460 | if ($t > pi()) { $t -= pi2 } | |||
461 | elsif ($t <= -pi()) { $t += pi2 } | |||
462 | return (ref $z1)->emake($r2 / $r1, $t); | |||
463 | } else { | |||
464 | _divbyzero "$z1/0" if ($r2 == 0); | |||
465 | $t = $t1 - $t2; | |||
466 | if ($t > pi()) { $t -= pi2 } | |||
467 | elsif ($t <= -pi()) { $t += pi2 } | |||
468 | return (ref $z1)->emake($r1 / $r2, $t); | |||
469 | } | |||
470 | } else { | |||
471 | my ($d, $x2, $y2); | |||
472 | if ($inverted) { | |||
473 | ($x2, $y2) = @{$z1->_cartesian}; | |||
474 | $d = $x2*$x2 + $y2*$y2; | |||
475 | _divbyzero "$z2/0" if $d == 0; | |||
476 | return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |||
477 | } else { | |||
478 | my ($x1, $y1) = @{$z1->_cartesian}; | |||
479 | if (ref $z2) { | |||
480 | ($x2, $y2) = @{$z2->_cartesian}; | |||
481 | $d = $x2*$x2 + $y2*$y2; | |||
482 | _divbyzero "$z1/0" if $d == 0; | |||
483 | my $u = ($x1*$x2 + $y1*$y2)/$d; | |||
484 | my $v = ($y1*$x2 - $x1*$y2)/$d; | |||
485 | return (ref $z1)->make($u, $v); | |||
486 | } else { | |||
487 | _divbyzero "$z1/0" if $z2 == 0; | |||
488 | return (ref $z1)->make($x1/$z2, $y1/$z2); | |||
489 | } | |||
490 | } | |||
491 | } | |||
492 | } | |||
493 | ||||
494 | # | |||
495 | # (_power) | |||
496 | # | |||
497 | # Computes z1**z2 = exp(z2 * log z1)). | |||
498 | # | |||
499 | sub _power { | |||
500 | my ($z1, $z2, $inverted) = @_; | |||
501 | if ($inverted) { | |||
502 | return 1 if $z1 == 0 || $z2 == 1; | |||
503 | return 0 if $z2 == 0 && Re($z1) > 0; | |||
504 | } else { | |||
505 | return 1 if $z2 == 0 || $z1 == 1; | |||
506 | return 0 if $z1 == 0 && Re($z2) > 0; | |||
507 | } | |||
508 | my $w = $inverted ? &exp($z1 * &log($z2)) | |||
509 | : &exp($z2 * &log($z1)); | |||
510 | # If both arguments cartesian, return cartesian, else polar. | |||
511 | return $z1->{c_dirty} == 0 && | |||
512 | (not ref $z2 or $z2->{c_dirty} == 0) ? | |||
513 | cplx(@{$w->_cartesian}) : $w; | |||
514 | } | |||
515 | ||||
516 | # | |||
517 | # (_spaceship) | |||
518 | # | |||
519 | # Computes z1 <=> z2. | |||
520 | # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. | |||
521 | # | |||
522 | sub _spaceship { | |||
523 | my ($z1, $z2, $inverted) = @_; | |||
524 | my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |||
525 | my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |||
526 | my $sgn = $inverted ? -1 : 1; | |||
527 | return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |||
528 | return $sgn * ($im1 <=> $im2); | |||
529 | } | |||
530 | ||||
531 | # | |||
532 | # (_numeq) | |||
533 | # | |||
534 | # Computes z1 == z2. | |||
535 | # | |||
536 | # (Required in addition to _spaceship() because of NaNs.) | |||
537 | sub _numeq { | |||
538 | my ($z1, $z2, $inverted) = @_; | |||
539 | my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |||
540 | my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |||
541 | return $re1 == $re2 && $im1 == $im2 ? 1 : 0; | |||
542 | } | |||
543 | ||||
544 | # | |||
545 | # (_negate) | |||
546 | # | |||
547 | # Computes -z. | |||
548 | # | |||
549 | sub _negate { | |||
550 | my ($z) = @_; | |||
551 | if ($z->{c_dirty}) { | |||
552 | my ($r, $t) = @{$z->_polar}; | |||
553 | $t = ($t <= 0) ? $t + pi : $t - pi; | |||
554 | return (ref $z)->emake($r, $t); | |||
555 | } | |||
556 | my ($re, $im) = @{$z->_cartesian}; | |||
557 | return (ref $z)->make(-$re, -$im); | |||
558 | } | |||
559 | ||||
560 | # | |||
561 | # (_conjugate) | |||
562 | # | |||
563 | # Compute complex's _conjugate. | |||
564 | # | |||
565 | sub _conjugate { | |||
566 | my ($z) = @_; | |||
567 | if ($z->{c_dirty}) { | |||
568 | my ($r, $t) = @{$z->_polar}; | |||
569 | return (ref $z)->emake($r, -$t); | |||
570 | } | |||
571 | my ($re, $im) = @{$z->_cartesian}; | |||
572 | return (ref $z)->make($re, -$im); | |||
573 | } | |||
574 | ||||
575 | # | |||
576 | # (abs) | |||
577 | # | |||
578 | # Compute or set complex's norm (rho). | |||
579 | # | |||
580 | sub abs { | |||
581 | my ($z, $rho) = @_; | |||
582 | unless (ref $z) { | |||
583 | if (@_ == 2) { | |||
584 | $_[0] = $_[1]; | |||
585 | } else { | |||
586 | return CORE::abs($z); | |||
587 | } | |||
588 | } | |||
589 | if (defined $rho) { | |||
590 | $z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; | |||
591 | $z->{p_dirty} = 0; | |||
592 | $z->{c_dirty} = 1; | |||
593 | return $rho; | |||
594 | } else { | |||
595 | return ${$z->_polar}[0]; | |||
596 | } | |||
597 | } | |||
598 | ||||
599 | sub _theta { | |||
600 | my $theta = $_[0]; | |||
601 | ||||
602 | if ($$theta > pi()) { $$theta -= pi2 } | |||
603 | elsif ($$theta <= -pi()) { $$theta += pi2 } | |||
604 | } | |||
605 | ||||
606 | # | |||
607 | # arg | |||
608 | # | |||
609 | # Compute or set complex's argument (theta). | |||
610 | # | |||
611 | sub arg { | |||
612 | my ($z, $theta) = @_; | |||
613 | return $z unless ref $z; | |||
614 | if (defined $theta) { | |||
615 | _theta(\$theta); | |||
616 | $z->{'polar'} = [ ${$z->_polar}[0], $theta ]; | |||
617 | $z->{p_dirty} = 0; | |||
618 | $z->{c_dirty} = 1; | |||
619 | } else { | |||
620 | $theta = ${$z->_polar}[1]; | |||
621 | _theta(\$theta); | |||
622 | } | |||
623 | return $theta; | |||
624 | } | |||
625 | ||||
626 | # | |||
627 | # (sqrt) | |||
628 | # | |||
629 | # Compute sqrt(z). | |||
630 | # | |||
631 | # It is quite tempting to use wantarray here so that in list context | |||
632 | # sqrt() would return the two solutions. This, however, would | |||
633 | # break things like | |||
634 | # | |||
635 | # print "sqrt(z) = ", sqrt($z), "\n"; | |||
636 | # | |||
637 | # The two values would be printed side by side without no intervening | |||
638 | # whitespace, quite confusing. | |||
639 | # Therefore if you want the two solutions use the root(). | |||
640 | # | |||
641 | # spent 13µs within Math::Complex::sqrt which was called
# once (13µs+0) at line 68 of /wise/base/deliv/dev/lib/perl/FITSIO.pm | |||
642 | 3 | 7.0e-6 | 2.3e-6 | my ($z) = @_; |
643 | my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); | |||
644 | return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) | |||
645 | if $im == 0; | |||
646 | my ($r, $t) = @{$z->_polar}; | |||
647 | return (ref $z)->emake(CORE::sqrt($r), $t/2); | |||
648 | } | |||
649 | ||||
650 | # | |||
651 | # cbrt | |||
652 | # | |||
653 | # Compute cbrt(z) (cubic root). | |||
654 | # | |||
655 | # Why are we not returning three values? The same answer as for sqrt(). | |||
656 | # | |||
657 | sub cbrt { | |||
658 | my ($z) = @_; | |||
659 | return $z < 0 ? | |||
660 | -CORE::exp(CORE::log(-$z)/3) : | |||
661 | ($z > 0 ? CORE::exp(CORE::log($z)/3): 0) | |||
662 | unless ref $z; | |||
663 | my ($r, $t) = @{$z->_polar}; | |||
664 | return 0 if $r == 0; | |||
665 | return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); | |||
666 | } | |||
667 | ||||
668 | # | |||
669 | # _rootbad | |||
670 | # | |||
671 | # Die on bad root. | |||
672 | # | |||
673 | sub _rootbad { | |||
674 | my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; | |||
675 | ||||
676 | my @up = caller(1); | |||
677 | ||||
678 | $mess .= "Died at $up[1] line $up[2].\n"; | |||
679 | ||||
680 | die $mess; | |||
681 | } | |||
682 | ||||
683 | # | |||
684 | # root | |||
685 | # | |||
686 | # Computes all nth root for z, returning an array whose size is n. | |||
687 | # `n' must be a positive integer. | |||
688 | # | |||
689 | # The roots are given by (for k = 0..n-1): | |||
690 | # | |||
691 | # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |||
692 | # | |||
693 | sub root { | |||
694 | my ($z, $n, $k) = @_; | |||
695 | _rootbad($n) if ($n < 1 or int($n) != $n); | |||
696 | my ($r, $t) = ref $z ? | |||
697 | @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); | |||
698 | my $theta_inc = pi2 / $n; | |||
699 | my $rho = $r ** (1/$n); | |||
700 | my $cartesian = ref $z && $z->{c_dirty} == 0; | |||
701 | if (@_ == 2) { | |||
702 | my @root; | |||
703 | for (my $i = 0, my $theta = $t / $n; | |||
704 | $i < $n; | |||
705 | $i++, $theta += $theta_inc) { | |||
706 | my $w = cplxe($rho, $theta); | |||
707 | # Yes, $cartesian is loop invariant. | |||
708 | push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; | |||
709 | } | |||
710 | return @root; | |||
711 | } elsif (@_ == 3) { | |||
712 | my $w = cplxe($rho, $t / $n + $k * $theta_inc); | |||
713 | return $cartesian ? cplx(@{$w->_cartesian}) : $w; | |||
714 | } | |||
715 | } | |||
716 | ||||
717 | # | |||
718 | # Re | |||
719 | # | |||
720 | # Return or set Re(z). | |||
721 | # | |||
722 | sub Re { | |||
723 | my ($z, $Re) = @_; | |||
724 | return $z unless ref $z; | |||
725 | if (defined $Re) { | |||
726 | $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; | |||
727 | $z->{c_dirty} = 0; | |||
728 | $z->{p_dirty} = 1; | |||
729 | } else { | |||
730 | return ${$z->_cartesian}[0]; | |||
731 | } | |||
732 | } | |||
733 | ||||
734 | # | |||
735 | # Im | |||
736 | # | |||
737 | # Return or set Im(z). | |||
738 | # | |||
739 | sub Im { | |||
740 | my ($z, $Im) = @_; | |||
741 | return 0 unless ref $z; | |||
742 | if (defined $Im) { | |||
743 | $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; | |||
744 | $z->{c_dirty} = 0; | |||
745 | $z->{p_dirty} = 1; | |||
746 | } else { | |||
747 | return ${$z->_cartesian}[1]; | |||
748 | } | |||
749 | } | |||
750 | ||||
751 | # | |||
752 | # rho | |||
753 | # | |||
754 | # Return or set rho(w). | |||
755 | # | |||
756 | sub rho { | |||
757 | Math::Complex::abs(@_); | |||
758 | } | |||
759 | ||||
760 | # | |||
761 | # theta | |||
762 | # | |||
763 | # Return or set theta(w). | |||
764 | # | |||
765 | sub theta { | |||
766 | Math::Complex::arg(@_); | |||
767 | } | |||
768 | ||||
769 | # | |||
770 | # (exp) | |||
771 | # | |||
772 | # Computes exp(z). | |||
773 | # | |||
774 | sub exp { | |||
775 | my ($z) = @_; | |||
776 | my ($x, $y) = @{$z->_cartesian}; | |||
777 | return (ref $z)->emake(CORE::exp($x), $y); | |||
778 | } | |||
779 | ||||
780 | # | |||
781 | # _logofzero | |||
782 | # | |||
783 | # Die on logarithm of zero. | |||
784 | # | |||
785 | sub _logofzero { | |||
786 | my $mess = "$_[0]: Logarithm of zero.\n"; | |||
787 | ||||
788 | if (defined $_[1]) { | |||
789 | $mess .= "(Because in the definition of $_[0], the argument "; | |||
790 | $mess .= "$_[1] " unless ($_[1] eq '0'); | |||
791 | $mess .= "is 0)\n"; | |||
792 | } | |||
793 | ||||
794 | my @up = caller(1); | |||
795 | ||||
796 | $mess .= "Died at $up[1] line $up[2].\n"; | |||
797 | ||||
798 | die $mess; | |||
799 | } | |||
800 | ||||
801 | # | |||
802 | # (log) | |||
803 | # | |||
804 | # Compute log(z). | |||
805 | # | |||
806 | sub log { | |||
807 | my ($z) = @_; | |||
808 | unless (ref $z) { | |||
809 | _logofzero("log") if $z == 0; | |||
810 | return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); | |||
811 | } | |||
812 | my ($r, $t) = @{$z->_polar}; | |||
813 | _logofzero("log") if $r == 0; | |||
814 | if ($t > pi()) { $t -= pi2 } | |||
815 | elsif ($t <= -pi()) { $t += pi2 } | |||
816 | return (ref $z)->make(CORE::log($r), $t); | |||
817 | } | |||
818 | ||||
819 | # | |||
820 | # ln | |||
821 | # | |||
822 | # Alias for log(). | |||
823 | # | |||
824 | sub ln { Math::Complex::log(@_) } | |||
825 | ||||
826 | # | |||
827 | # log10 | |||
828 | # | |||
829 | # Compute log10(z). | |||
830 | # | |||
831 | ||||
832 | sub log10 { | |||
833 | return Math::Complex::log($_[0]) * _uplog10; | |||
834 | } | |||
835 | ||||
836 | # | |||
837 | # logn | |||
838 | # | |||
839 | # Compute logn(z,n) = log(z) / log(n) | |||
840 | # | |||
841 | sub logn { | |||
842 | my ($z, $n) = @_; | |||
843 | $z = cplx($z, 0) unless ref $z; | |||
844 | my $logn = $LOGN{$n}; | |||
845 | $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) | |||
846 | return &log($z) / $logn; | |||
847 | } | |||
848 | ||||
849 | # | |||
850 | # (cos) | |||
851 | # | |||
852 | # Compute cos(z) = (exp(iz) + exp(-iz))/2. | |||
853 | # | |||
854 | sub cos { | |||
855 | my ($z) = @_; | |||
856 | return CORE::cos($z) unless ref $z; | |||
857 | my ($x, $y) = @{$z->_cartesian}; | |||
858 | my $ey = CORE::exp($y); | |||
859 | my $sx = CORE::sin($x); | |||
860 | my $cx = CORE::cos($x); | |||
861 | my $ey_1 = $ey ? 1 / $ey : $Inf; | |||
862 | return (ref $z)->make($cx * ($ey + $ey_1)/2, | |||
863 | $sx * ($ey_1 - $ey)/2); | |||
864 | } | |||
865 | ||||
866 | # | |||
867 | # (sin) | |||
868 | # | |||
869 | # Compute sin(z) = (exp(iz) - exp(-iz))/2. | |||
870 | # | |||
871 | sub sin { | |||
872 | my ($z) = @_; | |||
873 | return CORE::sin($z) unless ref $z; | |||
874 | my ($x, $y) = @{$z->_cartesian}; | |||
875 | my $ey = CORE::exp($y); | |||
876 | my $sx = CORE::sin($x); | |||
877 | my $cx = CORE::cos($x); | |||
878 | my $ey_1 = $ey ? 1 / $ey : $Inf; | |||
879 | return (ref $z)->make($sx * ($ey + $ey_1)/2, | |||
880 | $cx * ($ey - $ey_1)/2); | |||
881 | } | |||
882 | ||||
883 | # | |||
884 | # tan | |||
885 | # | |||
886 | # Compute tan(z) = sin(z) / cos(z). | |||
887 | # | |||
888 | sub tan { | |||
889 | my ($z) = @_; | |||
890 | my $cz = &cos($z); | |||
891 | _divbyzero "tan($z)", "cos($z)" if $cz == 0; | |||
892 | return &sin($z) / $cz; | |||
893 | } | |||
894 | ||||
895 | # | |||
896 | # sec | |||
897 | # | |||
898 | # Computes the secant sec(z) = 1 / cos(z). | |||
899 | # | |||
900 | sub sec { | |||
901 | my ($z) = @_; | |||
902 | my $cz = &cos($z); | |||
903 | _divbyzero "sec($z)", "cos($z)" if ($cz == 0); | |||
904 | return 1 / $cz; | |||
905 | } | |||
906 | ||||
907 | # | |||
908 | # csc | |||
909 | # | |||
910 | # Computes the cosecant csc(z) = 1 / sin(z). | |||
911 | # | |||
912 | sub csc { | |||
913 | my ($z) = @_; | |||
914 | my $sz = &sin($z); | |||
915 | _divbyzero "csc($z)", "sin($z)" if ($sz == 0); | |||
916 | return 1 / $sz; | |||
917 | } | |||
918 | ||||
919 | # | |||
920 | # cosec | |||
921 | # | |||
922 | # Alias for csc(). | |||
923 | # | |||
924 | sub cosec { Math::Complex::csc(@_) } | |||
925 | ||||
926 | # | |||
927 | # cot | |||
928 | # | |||
929 | # Computes cot(z) = cos(z) / sin(z). | |||
930 | # | |||
931 | sub cot { | |||
932 | my ($z) = @_; | |||
933 | my $sz = &sin($z); | |||
934 | _divbyzero "cot($z)", "sin($z)" if ($sz == 0); | |||
935 | return &cos($z) / $sz; | |||
936 | } | |||
937 | ||||
938 | # | |||
939 | # cotan | |||
940 | # | |||
941 | # Alias for cot(). | |||
942 | # | |||
943 | sub cotan { Math::Complex::cot(@_) } | |||
944 | ||||
945 | # | |||
946 | # acos | |||
947 | # | |||
948 | # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |||
949 | # | |||
950 | sub acos { | |||
951 | my $z = $_[0]; | |||
952 | return CORE::atan2(CORE::sqrt(1-$z*$z), $z) | |||
953 | if (! ref $z) && CORE::abs($z) <= 1; | |||
954 | $z = cplx($z, 0) unless ref $z; | |||
955 | my ($x, $y) = @{$z->_cartesian}; | |||
956 | return 0 if $x == 1 && $y == 0; | |||
957 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); | |||
958 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |||
959 | my $alpha = ($t1 + $t2)/2; | |||
960 | my $beta = ($t1 - $t2)/2; | |||
961 | $alpha = 1 if $alpha < 1; | |||
962 | if ($beta > 1) { $beta = 1 } | |||
963 | elsif ($beta < -1) { $beta = -1 } | |||
964 | my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); | |||
965 | my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |||
966 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); | |||
967 | return (ref $z)->make($u, $v); | |||
968 | } | |||
969 | ||||
970 | # | |||
971 | # asin | |||
972 | # | |||
973 | # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |||
974 | # | |||
975 | sub asin { | |||
976 | my $z = $_[0]; | |||
977 | return CORE::atan2($z, CORE::sqrt(1-$z*$z)) | |||
978 | if (! ref $z) && CORE::abs($z) <= 1; | |||
979 | $z = cplx($z, 0) unless ref $z; | |||
980 | my ($x, $y) = @{$z->_cartesian}; | |||
981 | return 0 if $x == 0 && $y == 0; | |||
982 | my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); | |||
983 | my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |||
984 | my $alpha = ($t1 + $t2)/2; | |||
985 | my $beta = ($t1 - $t2)/2; | |||
986 | $alpha = 1 if $alpha < 1; | |||
987 | if ($beta > 1) { $beta = 1 } | |||
988 | elsif ($beta < -1) { $beta = -1 } | |||
989 | my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); | |||
990 | my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |||
991 | $v = -$v if $y > 0 || ($y == 0 && $x < -1); | |||
992 | return (ref $z)->make($u, $v); | |||
993 | } | |||
994 | ||||
995 | # | |||
996 | # atan | |||
997 | # | |||
998 | # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). | |||
999 | # | |||
1000 | sub atan { | |||
1001 | my ($z) = @_; | |||
1002 | return CORE::atan2($z, 1) unless ref $z; | |||
1003 | my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); | |||
1004 | return 0 if $x == 0 && $y == 0; | |||
1005 | _divbyzero "atan(i)" if ( $z == i); | |||
1006 | _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... | |||
1007 | my $log = &log((i + $z) / (i - $z)); | |||
1008 | return _ip2 * $log; | |||
1009 | } | |||
1010 | ||||
1011 | # | |||
1012 | # asec | |||
1013 | # | |||
1014 | # Computes the arc secant asec(z) = acos(1 / z). | |||
1015 | # | |||
1016 | sub asec { | |||
1017 | my ($z) = @_; | |||
1018 | _divbyzero "asec($z)", $z if ($z == 0); | |||
1019 | return acos(1 / $z); | |||
1020 | } | |||
1021 | ||||
1022 | # | |||
1023 | # acsc | |||
1024 | # | |||
1025 | # Computes the arc cosecant acsc(z) = asin(1 / z). | |||
1026 | # | |||
1027 | sub acsc { | |||
1028 | my ($z) = @_; | |||
1029 | _divbyzero "acsc($z)", $z if ($z == 0); | |||
1030 | return asin(1 / $z); | |||
1031 | } | |||
1032 | ||||
1033 | # | |||
1034 | # acosec | |||
1035 | # | |||
1036 | # Alias for acsc(). | |||
1037 | # | |||
1038 | sub acosec { Math::Complex::acsc(@_) } | |||
1039 | ||||
1040 | # | |||
1041 | # acot | |||
1042 | # | |||
1043 | # Computes the arc cotangent acot(z) = atan(1 / z) | |||
1044 | # | |||
1045 | sub acot { | |||
1046 | my ($z) = @_; | |||
1047 | _divbyzero "acot(0)" if $z == 0; | |||
1048 | return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) | |||
1049 | unless ref $z; | |||
1050 | _divbyzero "acot(i)" if ($z - i == 0); | |||
1051 | _logofzero "acot(-i)" if ($z + i == 0); | |||
1052 | return atan(1 / $z); | |||
1053 | } | |||
1054 | ||||
1055 | # | |||
1056 | # acotan | |||
1057 | # | |||
1058 | # Alias for acot(). | |||
1059 | # | |||
1060 | sub acotan { Math::Complex::acot(@_) } | |||
1061 | ||||
1062 | # | |||
1063 | # cosh | |||
1064 | # | |||
1065 | # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |||
1066 | # | |||
1067 | sub cosh { | |||
1068 | my ($z) = @_; | |||
1069 | my $ex; | |||
1070 | unless (ref $z) { | |||
1071 | $ex = CORE::exp($z); | |||
1072 | return $ex ? ($ex + 1/$ex)/2 : $Inf; | |||
1073 | } | |||
1074 | my ($x, $y) = @{$z->_cartesian}; | |||
1075 | $ex = CORE::exp($x); | |||
1076 | my $ex_1 = $ex ? 1 / $ex : $Inf; | |||
1077 | return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, | |||
1078 | CORE::sin($y) * ($ex - $ex_1)/2); | |||
1079 | } | |||
1080 | ||||
1081 | # | |||
1082 | # sinh | |||
1083 | # | |||
1084 | # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |||
1085 | # | |||
1086 | sub sinh { | |||
1087 | my ($z) = @_; | |||
1088 | my $ex; | |||
1089 | unless (ref $z) { | |||
1090 | return 0 if $z == 0; | |||
1091 | $ex = CORE::exp($z); | |||
1092 | return $ex ? ($ex - 1/$ex)/2 : "-$Inf"; | |||
1093 | } | |||
1094 | my ($x, $y) = @{$z->_cartesian}; | |||
1095 | my $cy = CORE::cos($y); | |||
1096 | my $sy = CORE::sin($y); | |||
1097 | $ex = CORE::exp($x); | |||
1098 | my $ex_1 = $ex ? 1 / $ex : $Inf; | |||
1099 | return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, | |||
1100 | CORE::sin($y) * ($ex + $ex_1)/2); | |||
1101 | } | |||
1102 | ||||
1103 | # | |||
1104 | # tanh | |||
1105 | # | |||
1106 | # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |||
1107 | # | |||
1108 | sub tanh { | |||
1109 | my ($z) = @_; | |||
1110 | my $cz = cosh($z); | |||
1111 | _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); | |||
1112 | return sinh($z) / $cz; | |||
1113 | } | |||
1114 | ||||
1115 | # | |||
1116 | # sech | |||
1117 | # | |||
1118 | # Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |||
1119 | # | |||
1120 | sub sech { | |||
1121 | my ($z) = @_; | |||
1122 | my $cz = cosh($z); | |||
1123 | _divbyzero "sech($z)", "cosh($z)" if ($cz == 0); | |||
1124 | return 1 / $cz; | |||
1125 | } | |||
1126 | ||||
1127 | # | |||
1128 | # csch | |||
1129 | # | |||
1130 | # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |||
1131 | # | |||
1132 | sub csch { | |||
1133 | my ($z) = @_; | |||
1134 | my $sz = sinh($z); | |||
1135 | _divbyzero "csch($z)", "sinh($z)" if ($sz == 0); | |||
1136 | return 1 / $sz; | |||
1137 | } | |||
1138 | ||||
1139 | # | |||
1140 | # cosech | |||
1141 | # | |||
1142 | # Alias for csch(). | |||
1143 | # | |||
1144 | sub cosech { Math::Complex::csch(@_) } | |||
1145 | ||||
1146 | # | |||
1147 | # coth | |||
1148 | # | |||
1149 | # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |||
1150 | # | |||
1151 | sub coth { | |||
1152 | my ($z) = @_; | |||
1153 | my $sz = sinh($z); | |||
1154 | _divbyzero "coth($z)", "sinh($z)" if $sz == 0; | |||
1155 | return cosh($z) / $sz; | |||
1156 | } | |||
1157 | ||||
1158 | # | |||
1159 | # cotanh | |||
1160 | # | |||
1161 | # Alias for coth(). | |||
1162 | # | |||
1163 | sub cotanh { Math::Complex::coth(@_) } | |||
1164 | ||||
1165 | # | |||
1166 | # acosh | |||
1167 | # | |||
1168 | # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). | |||
1169 | # | |||
1170 | sub acosh { | |||
1171 | my ($z) = @_; | |||
1172 | unless (ref $z) { | |||
1173 | $z = cplx($z, 0); | |||
1174 | } | |||
1175 | my ($re, $im) = @{$z->_cartesian}; | |||
1176 | if ($im == 0) { | |||
1177 | return CORE::log($re + CORE::sqrt($re*$re - 1)) | |||
1178 | if $re >= 1; | |||
1179 | return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) | |||
1180 | if CORE::abs($re) < 1; | |||
1181 | } | |||
1182 | my $t = &sqrt($z * $z - 1) + $z; | |||
1183 | # Try Taylor if looking bad (this usually means that | |||
1184 | # $z was large negative, therefore the sqrt is really | |||
1185 | # close to abs(z), summing that with z...) | |||
1186 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) | |||
1187 | if $t == 0; | |||
1188 | my $u = &log($t); | |||
1189 | $u->Im(-$u->Im) if $re < 0 && $im == 0; | |||
1190 | return $re < 0 ? -$u : $u; | |||
1191 | } | |||
1192 | ||||
1193 | # | |||
1194 | # asinh | |||
1195 | # | |||
1196 | # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) | |||
1197 | # | |||
1198 | sub asinh { | |||
1199 | my ($z) = @_; | |||
1200 | unless (ref $z) { | |||
1201 | my $t = $z + CORE::sqrt($z*$z + 1); | |||
1202 | return CORE::log($t) if $t; | |||
1203 | } | |||
1204 | my $t = &sqrt($z * $z + 1) + $z; | |||
1205 | # Try Taylor if looking bad (this usually means that | |||
1206 | # $z was large negative, therefore the sqrt is really | |||
1207 | # close to abs(z), summing that with z...) | |||
1208 | $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) | |||
1209 | if $t == 0; | |||
1210 | return &log($t); | |||
1211 | } | |||
1212 | ||||
1213 | # | |||
1214 | # atanh | |||
1215 | # | |||
1216 | # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |||
1217 | # | |||
1218 | sub atanh { | |||
1219 | my ($z) = @_; | |||
1220 | unless (ref $z) { | |||
1221 | return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; | |||
1222 | $z = cplx($z, 0); | |||
1223 | } | |||
1224 | _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); | |||
1225 | _logofzero 'atanh(-1)' if (1 + $z == 0); | |||
1226 | return 0.5 * &log((1 + $z) / (1 - $z)); | |||
1227 | } | |||
1228 | ||||
1229 | # | |||
1230 | # asech | |||
1231 | # | |||
1232 | # Computes the hyperbolic arc secant asech(z) = acosh(1 / z). | |||
1233 | # | |||
1234 | sub asech { | |||
1235 | my ($z) = @_; | |||
1236 | _divbyzero 'asech(0)', "$z" if ($z == 0); | |||
1237 | return acosh(1 / $z); | |||
1238 | } | |||
1239 | ||||
1240 | # | |||
1241 | # acsch | |||
1242 | # | |||
1243 | # Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z). | |||
1244 | # | |||
1245 | sub acsch { | |||
1246 | my ($z) = @_; | |||
1247 | _divbyzero 'acsch(0)', $z if ($z == 0); | |||
1248 | return asinh(1 / $z); | |||
1249 | } | |||
1250 | ||||
1251 | # | |||
1252 | # acosech | |||
1253 | # | |||
1254 | # Alias for acosh(). | |||
1255 | # | |||
1256 | sub acosech { Math::Complex::acsch(@_) } | |||
1257 | ||||
1258 | # | |||
1259 | # acoth | |||
1260 | # | |||
1261 | # Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |||
1262 | # | |||
1263 | sub acoth { | |||
1264 | my ($z) = @_; | |||
1265 | _divbyzero 'acoth(0)' if ($z == 0); | |||
1266 | unless (ref $z) { | |||
1267 | return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; | |||
1268 | $z = cplx($z, 0); | |||
1269 | } | |||
1270 | _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); | |||
1271 | _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); | |||
1272 | return &log((1 + $z) / ($z - 1)) / 2; | |||
1273 | } | |||
1274 | ||||
1275 | # | |||
1276 | # acotanh | |||
1277 | # | |||
1278 | # Alias for acot(). | |||
1279 | # | |||
1280 | sub acotanh { Math::Complex::acoth(@_) } | |||
1281 | ||||
1282 | # | |||
1283 | # (atan2) | |||
1284 | # | |||
1285 | # Compute atan(z1/z2), minding the right quadrant. | |||
1286 | # | |||
1287 | # spent 46µs within Math::Complex::atan2 which was called
# once (46µs+0) at line 66 of /wise/base/deliv/dev/lib/perl/FITSIO.pm | |||
1288 | 5 | 3.3e-5 | 6.6e-6 | my ($z1, $z2, $inverted) = @_; |
1289 | my ($re1, $im1, $re2, $im2); | |||
1290 | 2 | 4.0e-6 | 2.0e-6 | if ($inverted) { |
1291 | ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |||
1292 | ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |||
1293 | } else { | |||
1294 | ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |||
1295 | ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |||
1296 | } | |||
1297 | if ($im1 || $im2) { | |||
1298 | # In MATLAB the imaginary parts are ignored. | |||
1299 | # warn "atan2: Imaginary parts ignored"; | |||
1300 | # http://documents.wolfram.com/mathematica/functions/ArcTan | |||
1301 | # NOTE: Mathematica ArcTan[x,y] while atan2(y,x) | |||
1302 | my $s = $z1 * $z1 + $z2 * $z2; | |||
1303 | _divbyzero("atan2") if $s == 0; | |||
1304 | my $i = &i; | |||
1305 | my $r = $z2 + $z1 * $i; | |||
1306 | return -$i * &log($r / &sqrt( $s )); | |||
1307 | } | |||
1308 | return CORE::atan2($re1, $re2); | |||
1309 | } | |||
1310 | ||||
1311 | # | |||
1312 | # display_format | |||
1313 | # ->display_format | |||
1314 | # | |||
1315 | # Set (get if no argument) the display format for all complex numbers that | |||
1316 | # don't happen to have overridden it via ->display_format | |||
1317 | # | |||
1318 | # When called as an object method, this actually sets the display format for | |||
1319 | # the current object. | |||
1320 | # | |||
1321 | # Valid object formats are 'c' and 'p' for cartesian and polar. The first | |||
1322 | # letter is used actually, so the type can be fully spelled out for clarity. | |||
1323 | # | |||
1324 | sub display_format { | |||
1325 | my $self = shift; | |||
1326 | my %display_format = %DISPLAY_FORMAT; | |||
1327 | ||||
1328 | if (ref $self) { # Called as an object method | |||
1329 | if (exists $self->{display_format}) { | |||
1330 | my %obj = %{$self->{display_format}}; | |||
1331 | @display_format{keys %obj} = values %obj; | |||
1332 | } | |||
1333 | } | |||
1334 | if (@_ == 1) { | |||
1335 | $display_format{style} = shift; | |||
1336 | } else { | |||
1337 | my %new = @_; | |||
1338 | @display_format{keys %new} = values %new; | |||
1339 | } | |||
1340 | ||||
1341 | if (ref $self) { # Called as an object method | |||
1342 | $self->{display_format} = { %display_format }; | |||
1343 | return | |||
1344 | wantarray ? | |||
1345 | %{$self->{display_format}} : | |||
1346 | $self->{display_format}->{style}; | |||
1347 | } | |||
1348 | ||||
1349 | # Called as a class method | |||
1350 | %DISPLAY_FORMAT = %display_format; | |||
1351 | return | |||
1352 | wantarray ? | |||
1353 | %DISPLAY_FORMAT : | |||
1354 | $DISPLAY_FORMAT{style}; | |||
1355 | } | |||
1356 | ||||
1357 | # | |||
1358 | # (_stringify) | |||
1359 | # | |||
1360 | # Show nicely formatted complex number under its cartesian or polar form, | |||
1361 | # depending on the current display format: | |||
1362 | # | |||
1363 | # . If a specific display format has been recorded for this object, use it. | |||
1364 | # . Otherwise, use the generic current default for all complex numbers, | |||
1365 | # which is a package global variable. | |||
1366 | # | |||
1367 | sub _stringify { | |||
1368 | my ($z) = shift; | |||
1369 | ||||
1370 | my $style = $z->display_format; | |||
1371 | ||||
1372 | $style = $DISPLAY_FORMAT{style} unless defined $style; | |||
1373 | ||||
1374 | return $z->_stringify_polar if $style =~ /^p/i; | |||
1375 | return $z->_stringify_cartesian; | |||
1376 | } | |||
1377 | ||||
1378 | # | |||
1379 | # ->_stringify_cartesian | |||
1380 | # | |||
1381 | # Stringify as a cartesian representation 'a+bi'. | |||
1382 | # | |||
1383 | sub _stringify_cartesian { | |||
1384 | my $z = shift; | |||
1385 | my ($x, $y) = @{$z->_cartesian}; | |||
1386 | my ($re, $im); | |||
1387 | ||||
1388 | my %format = $z->display_format; | |||
1389 | my $format = $format{format}; | |||
1390 | ||||
1391 | if ($x) { | |||
1392 | if ($x =~ /^NaN[QS]?$/i) { | |||
1393 | $re = $x; | |||
1394 | } else { | |||
1395 | if ($x =~ /^-?$Inf$/oi) { | |||
1396 | $re = $x; | |||
1397 | } else { | |||
1398 | $re = defined $format ? sprintf($format, $x) : $x; | |||
1399 | } | |||
1400 | } | |||
1401 | } else { | |||
1402 | undef $re; | |||
1403 | } | |||
1404 | ||||
1405 | if ($y) { | |||
1406 | if ($y =~ /^(NaN[QS]?)$/i) { | |||
1407 | $im = $y; | |||
1408 | } else { | |||
1409 | if ($y =~ /^-?$Inf$/oi) { | |||
1410 | $im = $y; | |||
1411 | } else { | |||
1412 | $im = | |||
1413 | defined $format ? | |||
1414 | sprintf($format, $y) : | |||
1415 | ($y == 1 ? "" : ($y == -1 ? "-" : $y)); | |||
1416 | } | |||
1417 | } | |||
1418 | $im .= "i"; | |||
1419 | } else { | |||
1420 | undef $im; | |||
1421 | } | |||
1422 | ||||
1423 | my $str = $re; | |||
1424 | ||||
1425 | if (defined $im) { | |||
1426 | if ($y < 0) { | |||
1427 | $str .= $im; | |||
1428 | } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { | |||
1429 | $str .= "+" if defined $re; | |||
1430 | $str .= $im; | |||
1431 | } | |||
1432 | } elsif (!defined $re) { | |||
1433 | $str = "0"; | |||
1434 | } | |||
1435 | ||||
1436 | return $str; | |||
1437 | } | |||
1438 | ||||
1439 | ||||
1440 | # | |||
1441 | # ->_stringify_polar | |||
1442 | # | |||
1443 | # Stringify as a polar representation '[r,t]'. | |||
1444 | # | |||
1445 | sub _stringify_polar { | |||
1446 | my $z = shift; | |||
1447 | my ($r, $t) = @{$z->_polar}; | |||
1448 | my $theta; | |||
1449 | ||||
1450 | my %format = $z->display_format; | |||
1451 | my $format = $format{format}; | |||
1452 | ||||
1453 | if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) { | |||
1454 | $theta = $t; | |||
1455 | } elsif ($t == pi) { | |||
1456 | $theta = "pi"; | |||
1457 | } elsif ($r == 0 || $t == 0) { | |||
1458 | $theta = defined $format ? sprintf($format, $t) : $t; | |||
1459 | } | |||
1460 | ||||
1461 | return "[$r,$theta]" if defined $theta; | |||
1462 | ||||
1463 | # | |||
1464 | # Try to identify pi/n and friends. | |||
1465 | # | |||
1466 | ||||
1467 | $t -= int(CORE::abs($t) / pi2) * pi2; | |||
1468 | ||||
1469 | if ($format{polar_pretty_print} && $t) { | |||
1470 | my ($a, $b); | |||
1471 | for $a (2..9) { | |||
1472 | $b = $t * $a / pi; | |||
1473 | if ($b =~ /^-?\d+$/) { | |||
1474 | $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; | |||
1475 | $theta = "${b}pi/$a"; | |||
1476 | last; | |||
1477 | } | |||
1478 | } | |||
1479 | } | |||
1480 | ||||
1481 | if (defined $format) { | |||
1482 | $r = sprintf($format, $r); | |||
1483 | $theta = sprintf($format, $theta) unless defined $theta; | |||
1484 | } else { | |||
1485 | $theta = $t unless defined $theta; | |||
1486 | } | |||
1487 | ||||
1488 | return "[$r,$theta]"; | |||
1489 | } | |||
1490 | ||||
1491 | 1 | 2.1e-5 | 2.1e-5 | 1; |
1492 | __END__ | |||
1493 | ||||
1494 | =pod | |||
1495 | ||||
1496 | =head1 NAME | |||
1497 | ||||
1498 | Math::Complex - complex numbers and associated mathematical functions | |||
1499 | ||||
1500 | =head1 SYNOPSIS | |||
1501 | ||||
1502 | use Math::Complex; | |||
1503 | ||||
1504 | $z = Math::Complex->make(5, 6); | |||
1505 | $t = 4 - 3*i + $z; | |||
1506 | $j = cplxe(1, 2*pi/3); | |||
1507 | ||||
1508 | =head1 DESCRIPTION | |||
1509 | ||||
1510 | This package lets you create and manipulate complex numbers. By default, | |||
1511 | I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |||
1512 | full complex support, along with a full set of mathematical functions | |||
1513 | typically associated with and/or extended to complex numbers. | |||
1514 | ||||
1515 | If you wonder what complex numbers are, they were invented to be able to solve | |||
1516 | the following equation: | |||
1517 | ||||
1518 | x*x = -1 | |||
1519 | ||||
1520 | and by definition, the solution is noted I<i> (engineers use I<j> instead since | |||
1521 | I<i> usually denotes an intensity, but the name does not matter). The number | |||
1522 | I<i> is a pure I<imaginary> number. | |||
1523 | ||||
1524 | The arithmetics with pure imaginary numbers works just like you would expect | |||
1525 | it with real numbers... you just have to remember that | |||
1526 | ||||
1527 | i*i = -1 | |||
1528 | ||||
1529 | so you have: | |||
1530 | ||||
1531 | 5i + 7i = i * (5 + 7) = 12i | |||
1532 | 4i - 3i = i * (4 - 3) = i | |||
1533 | 4i * 2i = -8 | |||
1534 | 6i / 2i = 3 | |||
1535 | 1 / i = -i | |||
1536 | ||||
1537 | Complex numbers are numbers that have both a real part and an imaginary | |||
1538 | part, and are usually noted: | |||
1539 | ||||
1540 | a + bi | |||
1541 | ||||
1542 | where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |||
1543 | arithmetic with complex numbers is straightforward. You have to | |||
1544 | keep track of the real and the imaginary parts, but otherwise the | |||
1545 | rules used for real numbers just apply: | |||
1546 | ||||
1547 | (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |||
1548 | (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |||
1549 | ||||
1550 | A graphical representation of complex numbers is possible in a plane | |||
1551 | (also called the I<complex plane>, but it's really a 2D plane). | |||
1552 | The number | |||
1553 | ||||
1554 | z = a + bi | |||
1555 | ||||
1556 | is the point whose coordinates are (a, b). Actually, it would | |||
1557 | be the vector originating from (0, 0) to (a, b). It follows that the addition | |||
1558 | of two complex numbers is a vectorial addition. | |||
1559 | ||||
1560 | Since there is a bijection between a point in the 2D plane and a complex | |||
1561 | number (i.e. the mapping is unique and reciprocal), a complex number | |||
1562 | can also be uniquely identified with polar coordinates: | |||
1563 | ||||
1564 | [rho, theta] | |||
1565 | ||||
1566 | where C<rho> is the distance to the origin, and C<theta> the angle between | |||
1567 | the vector and the I<x> axis. There is a notation for this using the | |||
1568 | exponential form, which is: | |||
1569 | ||||
1570 | rho * exp(i * theta) | |||
1571 | ||||
1572 | where I<i> is the famous imaginary number introduced above. Conversion | |||
1573 | between this form and the cartesian form C<a + bi> is immediate: | |||
1574 | ||||
1575 | a = rho * cos(theta) | |||
1576 | b = rho * sin(theta) | |||
1577 | ||||
1578 | which is also expressed by this formula: | |||
1579 | ||||
1580 | z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) | |||
1581 | ||||
1582 | In other words, it's the projection of the vector onto the I<x> and I<y> | |||
1583 | axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |||
1584 | the I<argument> of the complex number. The I<norm> of C<z> is | |||
1585 | marked here as C<abs(z)>. | |||
1586 | ||||
1587 | The polar notation (also known as the trigonometric representation) is | |||
1588 | much more handy for performing multiplications and divisions of | |||
1589 | complex numbers, whilst the cartesian notation is better suited for | |||
1590 | additions and subtractions. Real numbers are on the I<x> axis, and | |||
1591 | therefore I<y> or I<theta> is zero or I<pi>. | |||
1592 | ||||
1593 | All the common operations that can be performed on a real number have | |||
1594 | been defined to work on complex numbers as well, and are merely | |||
1595 | I<extensions> of the operations defined on real numbers. This means | |||
1596 | they keep their natural meaning when there is no imaginary part, provided | |||
1597 | the number is within their definition set. | |||
1598 | ||||
1599 | For instance, the C<sqrt> routine which computes the square root of | |||
1600 | its argument is only defined for non-negative real numbers and yields a | |||
1601 | non-negative real number (it is an application from B<R+> to B<R+>). | |||
1602 | If we allow it to return a complex number, then it can be extended to | |||
1603 | negative real numbers to become an application from B<R> to B<C> (the | |||
1604 | set of complex numbers): | |||
1605 | ||||
1606 | sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |||
1607 | ||||
1608 | It can also be extended to be an application from B<C> to B<C>, | |||
1609 | whilst its restriction to B<R> behaves as defined above by using | |||
1610 | the following definition: | |||
1611 | ||||
1612 | sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |||
1613 | ||||
1614 | Indeed, a negative real number can be noted C<[x,pi]> (the modulus | |||
1615 | I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |||
1616 | number) and the above definition states that | |||
1617 | ||||
1618 | sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |||
1619 | ||||
1620 | which is exactly what we had defined for negative real numbers above. | |||
1621 | The C<sqrt> returns only one of the solutions: if you want the both, | |||
1622 | use the C<root> function. | |||
1623 | ||||
1624 | All the common mathematical functions defined on real numbers that | |||
1625 | are extended to complex numbers share that same property of working | |||
1626 | I<as usual> when the imaginary part is zero (otherwise, it would not | |||
1627 | be called an extension, would it?). | |||
1628 | ||||
1629 | A I<new> operation possible on a complex number that is | |||
1630 | the identity for real numbers is called the I<conjugate>, and is noted | |||
1631 | with a horizontal bar above the number, or C<~z> here. | |||
1632 | ||||
1633 | z = a + bi | |||
1634 | ~z = a - bi | |||
1635 | ||||
1636 | Simple... Now look: | |||
1637 | ||||
1638 | z * ~z = (a + bi) * (a - bi) = a*a + b*b | |||
1639 | ||||
1640 | We saw that the norm of C<z> was noted C<abs(z)> and was defined as the | |||
1641 | distance to the origin, also known as: | |||
1642 | ||||
1643 | rho = abs(z) = sqrt(a*a + b*b) | |||
1644 | ||||
1645 | so | |||
1646 | ||||
1647 | z * ~z = abs(z) ** 2 | |||
1648 | ||||
1649 | If z is a pure real number (i.e. C<b == 0>), then the above yields: | |||
1650 | ||||
1651 | a * a = abs(a) ** 2 | |||
1652 | ||||
1653 | which is true (C<abs> has the regular meaning for real number, i.e. stands | |||
1654 | for the absolute value). This example explains why the norm of C<z> is | |||
1655 | noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |||
1656 | is the regular C<abs> we know when the complex number actually has no | |||
1657 | imaginary part... This justifies I<a posteriori> our use of the C<abs> | |||
1658 | notation for the norm. | |||
1659 | ||||
1660 | =head1 OPERATIONS | |||
1661 | ||||
1662 | Given the following notations: | |||
1663 | ||||
1664 | z1 = a + bi = r1 * exp(i * t1) | |||
1665 | z2 = c + di = r2 * exp(i * t2) | |||
1666 | z = <any complex or real number> | |||
1667 | ||||
1668 | the following (overloaded) operations are supported on complex numbers: | |||
1669 | ||||
1670 | z1 + z2 = (a + c) + i(b + d) | |||
1671 | z1 - z2 = (a - c) + i(b - d) | |||
1672 | z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |||
1673 | z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |||
1674 | z1 ** z2 = exp(z2 * log z1) | |||
1675 | ~z = a - bi | |||
1676 | abs(z) = r1 = sqrt(a*a + b*b) | |||
1677 | sqrt(z) = sqrt(r1) * exp(i * t/2) | |||
1678 | exp(z) = exp(a) * exp(i * b) | |||
1679 | log(z) = log(r1) + i*t | |||
1680 | sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |||
1681 | cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |||
1682 | atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. | |||
1683 | ||||
1684 | The definition used for complex arguments of atan2() is | |||
1685 | ||||
1686 | -i log((x + iy)/sqrt(x*x+y*y)) | |||
1687 | ||||
1688 | Note that atan2(0, 0) is not well-defined. | |||
1689 | ||||
1690 | The following extra operations are supported on both real and complex | |||
1691 | numbers: | |||
1692 | ||||
1693 | Re(z) = a | |||
1694 | Im(z) = b | |||
1695 | arg(z) = t | |||
1696 | abs(z) = r | |||
1697 | ||||
1698 | cbrt(z) = z ** (1/3) | |||
1699 | log10(z) = log(z) / log(10) | |||
1700 | logn(z, n) = log(z) / log(n) | |||
1701 | ||||
1702 | tan(z) = sin(z) / cos(z) | |||
1703 | ||||
1704 | csc(z) = 1 / sin(z) | |||
1705 | sec(z) = 1 / cos(z) | |||
1706 | cot(z) = 1 / tan(z) | |||
1707 | ||||
1708 | asin(z) = -i * log(i*z + sqrt(1-z*z)) | |||
1709 | acos(z) = -i * log(z + i*sqrt(1-z*z)) | |||
1710 | atan(z) = i/2 * log((i+z) / (i-z)) | |||
1711 | ||||
1712 | acsc(z) = asin(1 / z) | |||
1713 | asec(z) = acos(1 / z) | |||
1714 | acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) | |||
1715 | ||||
1716 | sinh(z) = 1/2 (exp(z) - exp(-z)) | |||
1717 | cosh(z) = 1/2 (exp(z) + exp(-z)) | |||
1718 | tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) | |||
1719 | ||||
1720 | csch(z) = 1 / sinh(z) | |||
1721 | sech(z) = 1 / cosh(z) | |||
1722 | coth(z) = 1 / tanh(z) | |||
1723 | ||||
1724 | asinh(z) = log(z + sqrt(z*z+1)) | |||
1725 | acosh(z) = log(z + sqrt(z*z-1)) | |||
1726 | atanh(z) = 1/2 * log((1+z) / (1-z)) | |||
1727 | ||||
1728 | acsch(z) = asinh(1 / z) | |||
1729 | asech(z) = acosh(1 / z) | |||
1730 | acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) | |||
1731 | ||||
1732 | I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, | |||
1733 | I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |||
1734 | I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |||
1735 | I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |||
1736 | C<rho>, and C<theta> can be used also as mutators. The C<cbrt> | |||
1737 | returns only one of the solutions: if you want all three, use the | |||
1738 | C<root> function. | |||
1739 | ||||
1740 | The I<root> function is available to compute all the I<n> | |||
1741 | roots of some complex, where I<n> is a strictly positive integer. | |||
1742 | There are exactly I<n> such roots, returned as a list. Getting the | |||
1743 | number mathematicians call C<j> such that: | |||
1744 | ||||
1745 | 1 + j + j*j = 0; | |||
1746 | ||||
1747 | is a simple matter of writing: | |||
1748 | ||||
1749 | $j = ((root(1, 3))[1]; | |||
1750 | ||||
1751 | The I<k>th root for C<z = [r,t]> is given by: | |||
1752 | ||||
1753 | (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |||
1754 | ||||
1755 | You can return the I<k>th root directly by C<root(z, n, k)>, | |||
1756 | indexing starting from I<zero> and ending at I<n - 1>. | |||
1757 | ||||
1758 | The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In | |||
1759 | order to ensure its restriction to real numbers is conform to what you | |||
1760 | would expect, the comparison is run on the real part of the complex | |||
1761 | number first, and imaginary parts are compared only when the real | |||
1762 | parts match. | |||
1763 | ||||
1764 | =head1 CREATION | |||
1765 | ||||
1766 | To create a complex number, use either: | |||
1767 | ||||
1768 | $z = Math::Complex->make(3, 4); | |||
1769 | $z = cplx(3, 4); | |||
1770 | ||||
1771 | if you know the cartesian form of the number, or | |||
1772 | ||||
1773 | $z = 3 + 4*i; | |||
1774 | ||||
1775 | if you like. To create a number using the polar form, use either: | |||
1776 | ||||
1777 | $z = Math::Complex->emake(5, pi/3); | |||
1778 | $x = cplxe(5, pi/3); | |||
1779 | ||||
1780 | instead. The first argument is the modulus, the second is the angle | |||
1781 | (in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a | |||
1782 | notation for complex numbers in the polar form). | |||
1783 | ||||
1784 | It is possible to write: | |||
1785 | ||||
1786 | $x = cplxe(-3, pi/4); | |||
1787 | ||||
1788 | but that will be silently converted into C<[3,-3pi/4]>, since the | |||
1789 | modulus must be non-negative (it represents the distance to the origin | |||
1790 | in the complex plane). | |||
1791 | ||||
1792 | It is also possible to have a complex number as either argument of the | |||
1793 | C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of | |||
1794 | the argument will be used. | |||
1795 | ||||
1796 | $z1 = cplx(-2, 1); | |||
1797 | $z2 = cplx($z1, 4); | |||
1798 | ||||
1799 | The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also | |||
1800 | understand a single (string) argument of the forms | |||
1801 | ||||
1802 | 2-3i | |||
1803 | -3i | |||
1804 | [2,3] | |||
1805 | [2,-3pi/4] | |||
1806 | [2] | |||
1807 | ||||
1808 | in which case the appropriate cartesian and exponential components | |||
1809 | will be parsed from the string and used to create new complex numbers. | |||
1810 | The imaginary component and the theta, respectively, will default to zero. | |||
1811 | ||||
1812 | The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also | |||
1813 | understand the case of no arguments: this means plain zero or (0, 0). | |||
1814 | ||||
1815 | =head1 DISPLAYING | |||
1816 | ||||
1817 | When printed, a complex number is usually shown under its cartesian | |||
1818 | style I<a+bi>, but there are legitimate cases where the polar style | |||
1819 | I<[r,t]> is more appropriate. The process of converting the complex | |||
1820 | number into a string that can be displayed is known as I<stringification>. | |||
1821 | ||||
1822 | By calling the class method C<Math::Complex::display_format> and | |||
1823 | supplying either C<"polar"> or C<"cartesian"> as an argument, you | |||
1824 | override the default display style, which is C<"cartesian">. Not | |||
1825 | supplying any argument returns the current settings. | |||
1826 | ||||
1827 | This default can be overridden on a per-number basis by calling the | |||
1828 | C<display_format> method instead. As before, not supplying any argument | |||
1829 | returns the current display style for this number. Otherwise whatever you | |||
1830 | specify will be the new display style for I<this> particular number. | |||
1831 | ||||
1832 | For instance: | |||
1833 | ||||
1834 | use Math::Complex; | |||
1835 | ||||
1836 | Math::Complex::display_format('polar'); | |||
1837 | $j = (root(1, 3))[1]; | |||
1838 | print "j = $j\n"; # Prints "j = [1,2pi/3]" | |||
1839 | $j->display_format('cartesian'); | |||
1840 | print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |||
1841 | ||||
1842 | The polar style attempts to emphasize arguments like I<k*pi/n> | |||
1843 | (where I<n> is a positive integer and I<k> an integer within [-9, +9]), | |||
1844 | this is called I<polar pretty-printing>. | |||
1845 | ||||
1846 | For the reverse of stringifying, see the C<make> and C<emake>. | |||
1847 | ||||
1848 | =head2 CHANGED IN PERL 5.6 | |||
1849 | ||||
1850 | The C<display_format> class method and the corresponding | |||
1851 | C<display_format> object method can now be called using | |||
1852 | a parameter hash instead of just a one parameter. | |||
1853 | ||||
1854 | The old display format style, which can have values C<"cartesian"> or | |||
1855 | C<"polar">, can be changed using the C<"style"> parameter. | |||
1856 | ||||
1857 | $j->display_format(style => "polar"); | |||
1858 | ||||
1859 | The one parameter calling convention also still works. | |||
1860 | ||||
1861 | $j->display_format("polar"); | |||
1862 | ||||
1863 | There are two new display parameters. | |||
1864 | ||||
1865 | The first one is C<"format">, which is a sprintf()-style format string | |||
1866 | to be used for both numeric parts of the complex number(s). The is | |||
1867 | somewhat system-dependent but most often it corresponds to C<"%.15g">. | |||
1868 | You can revert to the default by setting the C<format> to C<undef>. | |||
1869 | ||||
1870 | # the $j from the above example | |||
1871 | ||||
1872 | $j->display_format('format' => '%.5f'); | |||
1873 | print "j = $j\n"; # Prints "j = -0.50000+0.86603i" | |||
1874 | $j->display_format('format' => undef); | |||
1875 | print "j = $j\n"; # Prints "j = -0.5+0.86603i" | |||
1876 | ||||
1877 | Notice that this affects also the return values of the | |||
1878 | C<display_format> methods: in list context the whole parameter hash | |||
1879 | will be returned, as opposed to only the style parameter value. | |||
1880 | This is a potential incompatibility with earlier versions if you | |||
1881 | have been calling the C<display_format> method in list context. | |||
1882 | ||||
1883 | The second new display parameter is C<"polar_pretty_print">, which can | |||
1884 | be set to true or false, the default being true. See the previous | |||
1885 | section for what this means. | |||
1886 | ||||
1887 | =head1 USAGE | |||
1888 | ||||
1889 | Thanks to overloading, the handling of arithmetics with complex numbers | |||
1890 | is simple and almost transparent. | |||
1891 | ||||
1892 | Here are some examples: | |||
1893 | ||||
1894 | use Math::Complex; | |||
1895 | ||||
1896 | $j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |||
1897 | print "j = $j, j**3 = ", $j ** 3, "\n"; | |||
1898 | print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |||
1899 | ||||
1900 | $z = -16 + 0*i; # Force it to be a complex | |||
1901 | print "sqrt($z) = ", sqrt($z), "\n"; | |||
1902 | ||||
1903 | $k = exp(i * 2*pi/3); | |||
1904 | print "$j - $k = ", $j - $k, "\n"; | |||
1905 | ||||
1906 | $z->Re(3); # Re, Im, arg, abs, | |||
1907 | $j->arg(2); # (the last two aka rho, theta) | |||
1908 | # can be used also as mutators. | |||
1909 | ||||
1910 | =head2 PI | |||
1911 | ||||
1912 | The constant C<pi> and some handy multiples of it (pi2, pi4, | |||
1913 | and pip2 (pi/2) and pip4 (pi/4)) are also available if separately | |||
1914 | exported: | |||
1915 | ||||
1916 | use Math::Complex ':pi'; | |||
1917 | $third_of_circle = pi2 / 3; | |||
1918 | ||||
1919 | =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO | |||
1920 | ||||
1921 | The division (/) and the following functions | |||
1922 | ||||
1923 | log ln log10 logn | |||
1924 | tan sec csc cot | |||
1925 | atan asec acsc acot | |||
1926 | tanh sech csch coth | |||
1927 | atanh asech acsch acoth | |||
1928 | ||||
1929 | cannot be computed for all arguments because that would mean dividing | |||
1930 | by zero or taking logarithm of zero. These situations cause fatal | |||
1931 | runtime errors looking like this | |||
1932 | ||||
1933 | cot(0): Division by zero. | |||
1934 | (Because in the definition of cot(0), the divisor sin(0) is 0) | |||
1935 | Died at ... | |||
1936 | ||||
1937 | or | |||
1938 | ||||
1939 | atanh(-1): Logarithm of zero. | |||
1940 | Died at... | |||
1941 | ||||
1942 | For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |||
1943 | C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the | |||
1944 | logarithmic functions and the C<atanh>, C<acoth>, the argument cannot | |||
1945 | be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |||
1946 | C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |||
1947 | C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |||
1948 | cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |||
1949 | C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |||
1950 | is any integer. atan2(0, 0) is undefined, and if the complex arguments | |||
1951 | are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0. | |||
1952 | ||||
1953 | Note that because we are operating on approximations of real numbers, | |||
1954 | these errors can happen when merely `too close' to the singularities | |||
1955 | listed above. | |||
1956 | ||||
1957 | =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |||
1958 | ||||
1959 | The C<make> and C<emake> accept both real and complex arguments. | |||
1960 | When they cannot recognize the arguments they will die with error | |||
1961 | messages like the following | |||
1962 | ||||
1963 | Math::Complex::make: Cannot take real part of ... | |||
1964 | Math::Complex::make: Cannot take real part of ... | |||
1965 | Math::Complex::emake: Cannot take rho of ... | |||
1966 | Math::Complex::emake: Cannot take theta of ... | |||
1967 | ||||
1968 | =head1 BUGS | |||
1969 | ||||
1970 | Saying C<use Math::Complex;> exports many mathematical routines in the | |||
1971 | caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>). | |||
1972 | This is construed as a feature by the Authors, actually... ;-) | |||
1973 | ||||
1974 | All routines expect to be given real or complex numbers. Don't attempt to | |||
1975 | use BigFloat, since Perl has currently no rule to disambiguate a '+' | |||
1976 | operation (for instance) between two overloaded entities. | |||
1977 | ||||
1978 | In Cray UNICOS there is some strange numerical instability that results | |||
1979 | in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |||
1980 | The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |||
1981 | Whatever it is, it does not manifest itself anywhere else where Perl runs. | |||
1982 | ||||
1983 | =head1 AUTHORS | |||
1984 | ||||
1985 | Daniel S. Lewart <F<lewart!at!uiuc.edu>> | |||
1986 | Jarkko Hietaniemi <F<jhi!at!iki.fi>> | |||
1987 | Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>> | |||
1988 | ||||
1989 | =cut | |||
1990 | ||||
1991 | 1; | |||
1992 | ||||
1993 | # eof |