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Computing flux upper-limits for non-detections 
 

F. Masci,  10/25/2011 
 
 
If a source is not detected above some flux threshold (when expected to be present at a target 
position), how can one assign a plausible upper limit to its flux such that (i) it has precise 
probabilistic meaning; (ii) has a degree of confidence that is not subjective or arbitrarily conservative; 
and (iii) has no dependence on any prior knowledge about the flux? Unfortunately, the astronomical 
literature is not consistent in how upper limits are derived, and there are many confusing 
interpretations. Although “safe” and irrefutable when compared to “real” detections (e.g., in a 
spectrum), the quoted upper limits often lack probabilistic power. 
 
One of the difficulties stems from the fact that formal confidence intervals can only be assigned if a 
source is detected in the first place, i.e., has flux measurement > some threshold set according to 
some maximum tolerable fraction of spurious detections (false positives) in the noise distribution. 
This noise distribution defines the null hypothesis (H0) of no-detection (source flux consistent with 
zero). If a source is detected (and declared to have significant non-zero flux), upper and lower flux- 
limits (or a confidence interval) that probably contains the true flux can then be assigned using the 
uncertainties. If a source is not detected however, we cannot easily proceed because our flux 
measurement is consistent with zero according to the detection process. This process only decides if a 
noise excursion is probably not noise but a real source with significance defined with respect to H0 
only. It says nothing about possible bounds on its estimated flux relative to the true value. 
 
With no detection (hence knowledge of the probable flux with respect to “truth”), the process of 
defining an upper limit must be inextricably tied to the detection process. The process of deciding if a 
flux measurement exceeds some signal-to-noise (S/N) threshold where “N” is the noise-distribution σ 
is well defined. The noise-distribution for H0 can be defined either empirically or from a model. 
Figure 1 shows a schematic of the detection process and how a flux upper-limit can be assigned with 
a non-subjective probability. The α value for some threshold S/N = n specifies the maximum 
tolerable fraction of  “false positives” (or unreliable fraction from noise alone) such that a fluctuation 
with S/N > n is deemed too rare to be a noise spike and hence declared a source. E.g., if n = 3, then 
the (one-tailed) probability that it's a spurious noise spike under a Gaussian H0 is <0.135%. One can 
then reject H0 at the α = 0.135% (or 3σ) significance level. 
 
The β value in Figure 1 refers to the fraction of “false negatives”, that is, the fraction of real sources 
that go undetected. This value can be used to define a statistically meaningful measure for the flux 
upper-limit fUL on a non-detection since it indicates the maximum tolerable incompleteness of a 
population of sources with true flux ftrue = fUL subject to noise alone. Therefore, we define fUL as the 
minimum expected flux (ftrue) such that β achieves some βmax, where βmax is the maximum fraction of 
sources with ftrue = fUL we can tolerate as going undetected. In other words, 100(1 - βmax)% of the 
sources with flux fUL will have flux measurements > nσ. This also represents the minimum desired 
completeness level inflicted by noise alone. Therefore, given that we can predict in advance what is 
possible with our observational design and detection process (according to nσ and βmax), fUL as 
defined here provides a plausible upper limit for a non-detection. 
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         Figure 1: schematic illustrating the definition of an upper limit for a non-detection, 
         i.e., with flux ≤  nσ  and hence consistent with the null hypothesis (H0) of zero flux. 
         A flux upper-limit (fUL) is assigned according to one’s choice of the probability or 
         confidence (βʹ′) that an actual source with flux = fUL will be detected. Equivalently, 
         fUL is the minimum expected flux of a source such that the probability of not detecting 
         it does not exceed some β . See text for details. 
 
 
For the common case of Gaussian-distributed noise (which is also a good approximation to Poisson-
distributed noise when the detector counts exceed ~30), we can provide some estimates for fUL in 
terms of the detection threshold nσ for different choices of the detection probability βʹ′ = Pr(f > nσ). 
This probability can be written: 
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and erf(x) is the error function. 
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We have defined the population mean flux µ (or true flux) of a fiducial source with ftrue > nσ to be the 
flux upper limit sought for, fUL. Note: we have assumed that the σ of this fiducial source is the same 
as that used to define the initial detection threshold (nσ) under a H0 of ftrue = 0. I.e., we assume this σ 
does not depend on the source flux, as is the case for Poisson noise in the source-photon dominated 
(high flux) regime. However, given detection thresholds generally correspond to low fluxes (where 
background-noise and/or detector read-noise likely dominates), and since our fiducial source flux 
used to define fUL is not expected to be too far above nσ, the same σ should suffice throughout. 
 
Combining Equations (1) and (2), we have: 
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We can invert (3) and express fUL in terms of all other parameters and the inverse error function, 
erf -1(x): 
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fUL = n + 2erf−1(2 # β −1)[ ]σ .                                                                    (4)  

 
The flux upper limit for a non-detection therefore depends only on the detection parameters (n, σ) and 
our desired value for the probability βʹ′ of detecting a fiducial source with flux = fUL. Table 1 presents 
some possible βʹ′ values of interest and the corresponding flux upper limits. These are expressed in 
terms of the detection S/N threshold n and noise σ. As a reminder, these values only apply to a 
detection process where measurements are affected by Gaussian noise (the basis of Equation 4). 

 
 

βʹ′  1 - βʹ′  fUL 
0.50 0.50 nσ 
0.75 0.25 [n + 0.674]σ 
0.80 0.20 [n + 0.842]σ 
0.85 0.15 [n + 1.036]σ 
0.90 0.10 [n + 1.282]σ 
0.95 0.05 [n + 1.645]σ 
0.98 0.03 [n + 2.054]σ 
0.99 0.01 [n + 2.326]σ 

0.999 0.001 [n + 3.090]σ 
                             Table 1: suggested detection probability values (βʹ′) and 
                             corresponding flux upper limits (fUL) to assume for a non- 
                             detection with flux ≤ nσ under a simple Gaussian-noise model. 

 
The first row in Table 1 shows that assuming the actual detection threshold nσ as the flux upper limit 
(a choice often encountered in the literature) implies a detection probability of βʹ′ = 50%. This limit 
for a non-detection is speculative. We recommend a more conservative value for fUL, e.g., that 
corresponding to βʹ′ = 98% is a good choice. A S/N threshold of n = 3 then implies fUL ≈ 5σ from 
Table 1 (highlighted red). With this assumption, a survey designed to select sources with S/N > 3 will 
detect 98% of sources with true flux ≈ 5σ. This flux therefore represents a plausible upper limit for a 
non-detection with S/N ≤ 3. 
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If we were to go deeper and attempt to detect this ≤ 3σ source above some new threshold 3σnew (e.g., 
by beating down the noise with multiple independent exposures to give some σnew < σ), our initially 
assigned fUL = 5σ will still apply. Once detected (with flux presumably satisfying 3σnew < f ≤ 3σ), our 
5σ upper limit will be more conservative, i.e., larger relative to the measured flux since σnew < σ. For 
example, if we need σnew = 0.1σ to detect the source, our initial fUL will imply an upper limit of 
(5/0.1)σnew = 50σnew! The least-conservative (worst case) scenario is if the source resides just below 
the initial 3σ threshold, e.g., at 2.999999σ. We can then recover it with σnew = 0.9999995σ, giving a 
detection of 3.000001σnew. The upper limit now becomes (5/0.9999995)σnew = 5.000003σnew. This 
limit is [5.000003 – 3.000001]σnew ≈ 2σnew above the measured flux and corresponds to a confidence 
of ≈ 97.7% for the true flux for Gaussian noise. Therefore, the choice fUL ≈ [n + 2.054]σ will be 
reasonably conservative for all possible fluxes our non-detection may have. I doubt anyone will argue 
with this given it has a clear probabilistic interpretation when the noise-distribution is known. 
 
The simple construction above ignores the fact that true source populations follow a luminosity 
function (or observed number-count law) whereby there are relatively more faint sources than bright 
ones. Noise fluctuations will systematically cause more sources just below a flux threshold to be 
bumped above it and fewer to be thrown below it (and hence become non-detected). In qualitative 
terms, this will bias the counts upwards just above the flux threshold with the consequence of 
increasing the detection probability (βʹ′). This is the well known ‘Eddington Bias’. This bias works in 
the preferred direction when it comes to assigning flux upper limits to non-detections. Its ignorance 
(i.e., assuming source numbers symmetrically fluctuate about a threshold) will make fUL slightly 
larger (more conservative) than it needs to be for a given βʹ′. An exercise for the reader is to derive the 
necessary correction to fUL assuming a power-law source-flux distribution that is hit by Gaussian-
noise. You might as well also derive it for the case of Poisson-noise in the low photon-count regime. 


