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We derive the optimum aperture size for photometry of sources whose Point Response Function 
(PRF) profiles can be approximated as Gaussian. By optimum, we mean the aperture size (radius 
Rmax) which maximizes the signal-to-noise ratio. If you’re after the answer right away, here it is: 
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where σ  and FWHM (Full Width Half Maximum) characterize the Gaussian profile’s width. 
 
A Gaussian is a good approximation for ground based observations where the cores of PRFs can be 
modeled by a Gaussian ‘seeing’ profile. For spaced-based detectors, the profiles are primarily 
determined by the diffraction pattern formed by the telescope entrance pupil and other elements in the 
optical path. The simplest of these is an Airy pattern with some central obscuration. It would be 
interesting to repeat the exercise below for an Airy beam. For now, we stick with the humble 
Gaussian. 
 
Let the (background-subtracted) counts “signal” from a source integrated out to some radius R from 
its centroid be: 
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where g(r) is a well sampled radial profile function (i.e., the PRF which is ~ the PSF in the limit of 
infinite sampling assuming pixels with uniform responsivity). 
 
The noise in the measurement aperture can be generalized into two components: Poisson noise from 
the source counts alone with variance C(R), and a “background” component which encompasses all 
other extraneous noise sources affecting the pixel measurements (e.g., read-noise, other instrumental 
noise, sky photon noise etc). Let the noise variance (per pixel) in this extraneous noise be v. The total 
variance in the measurement radius out to some radius R, ignoring pixel-to-pixel correlations can be 
written: 
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v,                                                                                      (2)  
 
where the πR2 is effectively the number pixels in the aperture given R in pixel units. 
 
The signal-to-noise ratio S/N, as a function of radius can be written: 
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We assume a 2D Gaussian for the source profile: 
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where σ characterizes the Gaussian’s width, and for simplicity we have normalized to unity.  Any 
other normalization (or multiplicative) factor could have been used to return a ‘real’ count > 1, but 
this can be factored out and it doesn’t affect our computation of the optimum radius. 
 
Substituting (4) in (3) and carrying out the integrations (by parts), yields: 
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.                                                                 (5) 

 
The figure below shows S/N as a function of R for different values of the “extraneous” variance per 
pixel v. As expected, when there is no additional pixel variance (v = 0), the maximum S/N is achieved 
at R = ∞. For any other significant value of v, the S/N appears to be maximized at R ≈ 1.6σ. For very 
large v, it will converge to a finite result. See below. 
 
The optimum radius can be derived more formally from Eq. (5) by solving for R such that: 
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"R
= 0, 

 
and taking the limit as v → ∞. This can be easily done numerically in Mathematica or Maple. The 
optimum radius (at which S/N is maximized) comes out to be ≈ 1.5852σ. Given that FWHM ≈ 
2.3548σ for a Gaussian, we also have: Rmax ≈ 0.6731FWHM. 
 
It’s also important to note that the S/N is fairly insensitive to radius near this optimal radius. 
Deviations from the optimal radius by as much as ±50% generally make little difference. In practice, 
you may want to use a slightly larger aperture than the optimal. This is because centroiding errors will 
be more critical for smaller apertures than for larger ones. An aperture radius of R ≈ FWHM is a good 
compromise. Only practice makes perfect! 
 
 



 
Figure 1: Signal-to-Noise ratio as a function of aperture radius for different values of the 
“extraneous” pixel noise variance v (i.e., all noise components other than the Poisson 
contribution from the background-subtracted source counts). 


