

Processing System Hardware

Heidi Brandenburg IPAC/Caltech

Jet Propulsion Laboratory California Institute of Technology WSDC Functional Block Diagram

Hardware

Driving Requirements

The WSDC operational hardware must

- Deliver processed data in time to meet the operations scenario
- Be scalable, so we can start with a little now and add more with need
- Support heterogeneous operating systems, programming languages, file systems, and database engines

Processing System Hardware

Ingest Development Spare 2xDual Core Xeon ~25 Cluster Compute Nodes ≥ 16 GB RAM ≥ 2xQuad Core Xeon RAID 5 ≥8 GB RAM Redundant Power ≥ 500 GB Local Disk gigabit ethernet Network Switch gigabit ethernet (potentially trunked) Operations Archive Operations Archive Sun File Server Sun File Server Nexsan Nexsan Nexsan Nexsan Storage Storage Storage Storage

Current Status

Cluster

- ~25 2xQuad-core Commodity Dell servers. 1U, 8 GB RAM, 500GB SATA storage
- Some machines will have better resources: more RAM/faster CPUS
- We run RHEL4.
- Current frame pipeline scales with increasing cores and increasing number of cluster nodes*

^{*} Scales as long as we can push data in and out fast enough, of course.

Operations Archive

- The operations archive hosts the WSDC software tree and functions as persistent data store for L0, L1, and L3 products
- Accessed by pipelines to retrieve their inputs and push their (minimal) products
- Critically important that the operations archive can support the data rate required to meet the mission operations scenario.
 Currently we calculate this rate as 2Gbs.

Backup

- Current backup provided by IPAC Systems Group
- Future backup of operations archive occurs on WISE hardware
- Utilize hot swappable disk for local, cycling backup
- Utilize LTO for long term offsite backup (Telemetry, expanded L0 products, Archive)

Disaster Recovery

- In case of disaster WSDC provides minimal functionality: ingest of telemetry and housekeeping, generation of L0 images, and quicklook pipeline processing to assess spacecraft health.
- These functions can be provided by single offsite machine, configured as a normal cluster node, with attached storage and a copy of the WSDC software tree.

Job Scheduling

- Use Condor, a cluster scheduling package from the University of Wisconsin.
 - WISE has a simple use case: first pipeline in is the first pipeline executed
 - We don't use MPI, checkpointing, backfilling or other fancy cluster technologies available with Condor
 - Condor can match jobs with big resource needs to the machines with those resources (example: Condor matches a big coadd to a machine with > 8 GB RAM)

Cluster Resource Monitoring

- Use Ganglia, an open source project for accumulating, collecting, and displaying near-realtime resource use measurements for clusters
- Can be expanded with custom monitors

Frame Pipeline Execution

- Depending on the simulated scene current frame pipeline executes in 150-180 seconds CPU time.
- On an unloaded node, elapsed clock time is *less* than time on CPU, typically resulting in CPU utilization of 110-120%
- CPU bound

Concurrent execution via Condor

Hardware

- Condor partitions a node into 8 "virtual machines" 1 per core
- Condor dispatches 1 job to each virtual machine
- Ran experiments queuing different numbers of frames through Condor. For runs with a fill ratio > 1, execution clock times are flat, with ~98% of time spent on CPU
- With nodes fully loaded, one pipeline per core, we are close to using our full 8GB RAM in portions of the frame pipeline.
- Still not waiting on IO.

Concurrent execution via Condor

Execution of a Simulated Scan

Hardware

- 250 frame simulated scan
- Run on 4 machine development cluster
- Ops Archive disk mounted on dev server, exported to cluster via NFS

Execution of a Simulated Scan

Hardware

Single node statistics

Operations Archive & Network bandwidth

- Tests were done by loading more than 8 pipelines onto cluster nodes
 - At 12 pipelines/node seeing IO waits to node local storage
 - At greater numbers of pipelines, started paging
 - Largest 5 minute average traffic on the cluster network ~40Mbps
- Unable to properly test network loading scenarios via frame pipeline with current cluster hardware

Deployment Schedule

Phase 1 / WSDS v2

- Supports mission scenario testing
- 10 cluster nodes + 1 master
- 1 fileserver, 1 disk array (v2 4 months)
- Ingest machine

Phase 2 / WSDS v3

- Supports Ops readiness tests, launch, IOC
- 25 cluster nodes + 1 master
- 2 fileservers, 2 disk arrays (v3 2 months)
- Backup System (v3 4 months)
- System complete as specified
- Phase 3 / Q2 2010 (or 3 months post launch)
 - Purchase additional disk and CPU based on measured needs for final processing

Issues/Concerns

- Testing network & operations archive scalability to 20 cluster nodes
- Condor job management tools are command-line and based upon its own job abstractions & terminology. TBD need for job management tools targeted at a human operator working on scans, frames, and coadds.

