WISE Science Data System Design

Tim Conrow
IPAC
WISE Science Data Center CDR – January 29-30, 2008
Jargon

• **Data levels**
 - Telemetry: CCSDS source packets
 - Raw: FITS, integer 2.75” pixels, band+time meta-data
 - Level-0: Raw + real pixels, add much meta data
 - Level-1: Level-0 + instrumental, astrometric/photometric calibration
 • Level-1a: Level-0 + instrumental calibration applied to pixels
 • Level-1b: Level-1a + astrometric/photometric calibration in header
 - Level-2: Level-1 + upsampled and undistorted (rubber-sheeted)
 • Level-2a: Level-1a + upsampled and undistorted
 • Level-2b: Level-1b + upsampled and undistorted
 - Level-3: Multiple frame coadds, upsampled, undistorted
 - Atlas images: Selected FPG Level-3 products

• **WSDS hierarchy**
 - Sub-system: One of 6 major functionality groupings making up the WSDS
 - Module: A smaller unit of functionality within a sub-system. E.g. a pipeline is made up modules, sometimes from different sub-systems
 - For historical reasons you will occasionally hear someone refer to a module as a sub-system

WISE Science Data Center CDR – January 29-30, 2008
External Interfaces

MOS (JPL) - Ingest Verification Report
HRP @ White Sands - EOS Product Archive
Raw Science Data Packets - QA Reports
Raw Data Manifest

WTCCS - Science Ops (UCLA)
Engineering Telemetry
EOS Products (ops files, command logs, data logs)

NAV - Science Ops (UCLA)
Ephemeris, S/C Pointing,
UTC Conversion, SSOH,
Predicted Events Files

Science Ops (UCLA) - Science & Project Team
Survey Plan
Simulated Data

Payload (SDL) - Science & Project Team
Ground Test Calibration Data

MOS (JPL) - Astronomical Community
Ingest Verification Report
EOS Product Archive
QA Reports

Science Ops (UCLA) - Astronomical Community
Quicklook QA Reports
Full QA Reports
QA Database
Coverage Statistics

Science & Project Team - Astronomical Community
L0 Products (raw FITS images, metadata)
L1 Products (calibrated FITS images, source WDB, metadata)
L3 products (coadded FITS images, deep source WDB, coverage maps, metadata)
QA Database
Analysis Reports

Science Ops (UCLA) - Infrared Science Archive
Ingest Verification Report
EOS Product Archive
QA Reports

Science Ops (UCLA) - WISE Science Data Center
Survey Plan
Simulated Data

Payload (SDL) - L0 Products (raw FITS images, metadata)
Ground Test Calibration Data

Science & Project Team - L1 Products (calibrated FITS images, source WDB, metadata)
Algorithms
Analysis Reports

Science & Project Team - L3 products (coadded FITS images, deep source WDB, coverage maps, metadata)

Science & Project Team - Astronomical Community
Image Atlas, Source Catalog,
metadata tables
Explanatory Supplement

Infrared Science Archive

WISE Science Data Center CDR – January 29-30, 2008
External Interfaces

- From MOS/GDS ICD
- High Rate Processor (HRP)
 - To WSDS:
 - Data push using FastCopy
 - Manifest of files to be delivered
 - CCSDS source packet virtual channel (1A-1D) file for each band
 - `WIS_HRP_PKT_FE1A_YYYY_DDD_HH_MM_SS.bin`
 - `WIS_HRP_PKT_FE1B_YYYY_DDD_HH_MM_SS.bin`
 - `WIS_HRP_PKT_FE1C_YYYY_DDD_HH_MM_SS.bin`
 - `WIS_HRP_PKT_FE1D_YYYY_DDD_HH_MM_SS.bin`
 - HRP to JPL via trunked T1 lines, then to IPAC via Internet
 - 4 transfers/day totaling 25GB
 - 14 hours/day transfer time
 - HRP->JPL: 4Mbit/s
 - JPL->IPAC: timing test shows 80Mbit/s
 - From WSDS: Nothing
External Interfaces

- **MOS**
 - **To WSDC:**
 - H/K CSV: temperatures, rates, etc.

 WIS_WTCCS_TYPE/YYYYDDD_HH_MM_SS.csv
 - ADCS S/C attitude (C-kernel), S/C time (Clock-kernel), S/C Ephemerides (SP-Kernel), read with the JPL NAIF (Navigation and Ancillary Information Facility) toolkit

 WIS_EOS_clock_file/YYYYDDD_HH_MM_MM.txt
 - Command Mnemonic File (CMF) - maneuver command quaternions

 WIS_SEQ_CMF/YYYYDDD_HH_MM_SS.txt
 - Predicted Events File (PEF): N/SEP crossings (orbit #’s), SAA entry/exit, Science scan start/stop

 WIS_SEQ_SEQID/YYYYDDD_HH_MM_SS.pef

 0941934127:172 2009-310T00:22:07.673 GEV,S_POLE_CROSS,REQ_2$ _1GEV; << Spacecraft south pole crossing >>;
 0941935556:150 2009-310T00:45:56.584 GEV,NODE_CROSS,REQ_3$ _1GEV; << Spacecraft ascending node crossing >>;
 0941936985:123 2009-310T01:09:45.479 GEV,N_POLE_CROSS,REQ_4$ _1GEV; << Spacecraft north pole crossing >>;
 0941944815:069 2009-310T03:20:15.271 GEV,SAA,REQ_6$ _1GEV,2009-310T03:21:03:236; << South Atlantic Anomaly >>;
 0941944815:069 2009-310T03:20:15:271 OEF: IN_SAA=TRUE;
 0941944863:060 2009-310T03:21:03:236 OEF: IN_SAA=FALSE;
 - Mission, H/K data for deep archive
External Interfaces

• MOS (continued)
 – From WSDC: Deep archive of mission+H/K data, QA reports

• SOC
 – To WSDC: Survey plan

WIS_EOS_SURVEY_PLAN_YYYY_DDD_HH_MM_SS.txt

#TOGGLE 0.2200
#MOONAVOID 1.2300
#ECLIPSEBIAS 0.0000
#BIAS 0.0000
#BIASMAX 0.0000
#DIHEDRAL 0.0000
#SCANRATE 0.0000 3.8000 0.0000
Time now: 10/26/2007 13:51:11
Start time: 12/03/2009 01:30:00
End time: 12/10/2009 01:30:00
0.5 1310522757.860 0.027640 0.190134 -0.966404 -0.170731 0.000000 3.800000 0.000000
1.0 1310525373.402 -0.960474 0.150126 0.101595 0.211258 0.000000 3.800000 0.000000
1.5 1310528228.944 -0.099569 0.210886 -0.962331 -0.139757 0.000000 3.800000 0.000000
2.0 1310531324.486 -0.964983 0.179824 -0.025653 0.189244 0.000000 3.800000 0.000000
2.5 1310534180.028 0.027908 0.190253 -0.966589 -0.169503 0.000000 3.800000 0.000000
3.0 1310536795.570 -0.960701 0.148895 0.101355 0.211215 0.000000 3.800000 0.000000

– From WSDC: Survey progress, Quicklook, QA Report
External Interfaces

• Science and Project Team
 – To WSDC: Algorithms, ground test/cal data analysis
 – From WSDC: Archive access, Quicklook, QA results, images

• SDL, JPL
 – To/From WSDC: Ground test data

• Public
 – From WSDC: IRSA access to
 • Atlas images
 • Catalogs and meta-data
 • Explanatory Supplement
Key WSDC System Level Functional Requirements

- Design of Processing Capabilities
 - Capable of supporting a 13 month mission (L4WSDC-83)
 - Ingest (L4WSDC-29-36), Pipelines (L4WSDC-37-49), Archive (L4WSDC-50-59), QA (L4WSDC-62-66)

- Throughput and Latency
 - Data volume: 25GB/day (L4WSDC-30), 50GB/day peak (L4WSDC-31)
 - 6 months of data acquisition (L4WSDC-82)
 - Quicklook: QA report within 24 hours (L4WSDC-32)
 - Scan/Frame Pipelines: Level-1 available within 3 days (L4WSDC-39)

- Robustness
 - Disaster recovery (L4WSDC-54)
 - 50% Processing Margin (L4WSDC-70)

- Schedule
 - Preliminary release: EOO+6 months (L4WSDC-4)
 - Final release: EOO+17 months (L4WSDC-8)

- Archive: Public access through IRSA (L4WSDC-51,53,60,61,86,etc.)
Derived Key Design Features

- A compute cluster composed of interchangeable inexpensive nodes
 - Capability, latency, robustness, schedule
- Maximal use of node-local storage to offload network
 - Latency, schedule
 - Medium cost storage and servers
 - Archive, robustness
- Minimal reliance on external services (IRSA, license servers, etc.) for ingest and pipelines
 - Latency, robustness
- Dedicated ops and QA staff
 - Latency, robustness, schedule
- Daily backup of critical data, off-site storage of critical data, disaster recovery plan
 - Schedule, latency, robustness
- Maximal leveraging of IRSA/IPAC expertise and infrastructure
 - Schedule, robustness
Sub-systems

- **INGEST**
 - Receives science data packets and engineering telemetry from MOS and assembles Level 0 FITS-format files. Stages Level 0 images and metadata for pipeline processing.

- **Data Reduction PIPELINES**
 - Converts Level 0 imaging data into calibrated images and extracted source Working Databases
 - Frame/Scan pipeline operates on individual frames within one “scan” (=1/2 orbit)
 - Multi-frame pipeline operates on data from multiple orbits

- **Quality Assurance (QA)**
 - Generates concise reports summarizing science data quality using summary outputs from other subsystems. Web-based report, with capability to drill-down to detailed image, graphical and tabular data
 - Reports reviewed by QA scientists at WSDC. Final quality assignment approved by PI or designee

- **EXEC**
 - Provides interface-related services to wrappers and pipelines
 - Mediates between external callers and applications, providing a uniform interface, binding execution units (modules) together into a unified pipeline

- **ARCHIVE/Distribution System**
 - Archives raw and processed mission data and metadata. Serves Image Atlas, Source Catalog and mission metadata to WISE project team and astronomical community. Integrated into Infrared Science Archive (IRSA) at IPAC.

- **Final Product Generator (FPG)**
 - Constructs WISE Preliminary and Final Image Atlases and Source Catalogs from combined image and source Working Databases. Includes validation, characterization and documentation.
Sub-systems: Ingest

Ground-station
- **White Sands**
 - HRP
 - Science telem
 - Manifest
- **Image buffer**
- **Dedicated ~4 Mbit/s**
- **25 Gbyte/day**
 - ~14 hours
- **Data PUSH**

MOS (JPL)
- **H/K as CSV**
- **Temp.s**
- **SPICE kernel**
- **etc.**
- **Orbit events**
- **~1GB/day**
- **Data PUSH**

SOC (UCLA)
- **Mission plan**
- **Weekly**
- **Low volume**

Internet

Ancillary Data archive
- **Ingest-1**
- **Frame Index**
- **Meta data**
- **Level-0 Frames**

Raw telem archive
- **Ingest-2**
- **Generate level-0 frames**

Raw image staging

IPAC
- **Pipelines**
 - **Scan pipeline**
 - **Frame pipeline**
 - **Quicklook**
 - **Frame pipeline**

WSDC (IPAC)

Wise Science Data Center CDR – January 29-30, 2008
Sub-systems: Scan Pipeline, Dynamic Calibration

- Ingest runs dynamic calibration prior to the normal frame pipeline when …
 - … any of these conditions apply …
 - An anneal has occurred with no intervening dynamic calibration
 - Some other event which might modify the flat or sky offset
 - … and sufficient frames exposed after the last anneal (or other event) are available
- ~10 orbits of recent frames which meet certain constraints are selected
 - Out of confused areas, away from exciting background features
 - No known anomalies or saturated sources, few radiation hits
 - Etc.

WISE Science Data Center CDR – January 29-30, 2008
Sub-systems:
Frame Pipeline

Ingest

Scan Pipeline

Frame Pipeline

Level-0 Frames

Static & Dynamic Instrumental Calibration

Level-0 Frame Index

Meta-data

Level-1a Frame

Level-1b Frame

Level-2a Frame

Frame Pipeline

Instrumental Frame Calibration

Upsample/ Distortion Correction

Source Detection/ Extraction

DetEx

ICal

Coadd

DetEx

Level-1a Source list

RA,Dec,flux

Level-1a Source list

RA,Dec,flux,x,y

Level-1b Source list

RA,Dec,flux, etc.

Level-1b Source list

RA,Dec,flux, etc.

Level-2b Frame

Level-1b Frame

Level-1b Frame

Meta-
Data

WCS

Update WCS

Position Reconstruction

Exec

PRex

Convert

Exec

QA

Gen QA reports

QA reports

Meteor Data

SSOID

Match Solar System Objects

Asynchronous

Prototyped

WISE Science Data Center CDR – January 29-30, 2008
Sub-Systems:
Quicklook Pipeline

- Same as Scan/frame pipeline, except …
 - Only a select few frames processed
 - Processed for each delivery without delay, no waiting for pending frames
 - No dynamic calibration in frame processing; use static calibration only
 - Source catalogs not archived
 - Specialized QA: Scan frame sync
 - No Solar System object matching
 - Pipeline output in separate location from Scan/frame pipeline output
Sub-systems: Multi-frame Pipeline

- 2MASS Ref. list
- Level-1b Source Lists
- Frame Index
- Frame list
- Meta-data
- Level-0 Frames
- Static & Dynamic Instrumental Calibration
- Frame list
- Level-1b Frames
- Source Detection/Extraction
- Exec
- PRex
- Manual Start
- Select Frames
- Partial Scan/Frame Pipeline
- Coadd
- Outlier rejection
- BG matching
- Upsample, Coadd
- Source List
- Coadd
- Coadd
- Coadd
- QA reports
- Gen QA reports
- Meta-data
- QA reports
- Work image staging
- RA, Dec, flux, etc.
- Level-3 Source list
- Level-1b Frames
- Level-3 Coadd
- Meta-data
- Frame list

WISE Science Data Center CDR – January 29-30, 2008
Sub-systems: Quality Assurance

Ingest -> Quicklook Pipeline -> Scan/Frame Pipeline -> Multi-Frame Pipeline

QA Report Generation

QA data:
- Plots
- Meta-data (stats etc.)
- Web page reports

QA Analysis Tools

Export -> Archive

IRSA Archive

Web

Manual start

QA

As-needed analysis

External/internal analysts
Sub-systems: Executive

- **Wrappers**
 - Uniform parameter interface
 - Input/Output Data massaging
 - Stdout/Stderr message logging
 - Job Control and monitoring
 - UNIX exec/fork+IPC, or Condor
 - Pipelines are wrappers too

- Parameter handling
 - Parameter type/constraint checking
 - Read from and/or save to parameter files
 - Inherit parameters from parent processes
 - Print context (host, release, etc.)
Sub-systems:
Archive

- Level-1b Sources
- Level-1b SSOID matches
- Level-1b Images
- Level-3 Sources
- Level-3 Images
- QA data and reports
- Pipelines
- IRSA
- Archive
- Web

Internal
External

Analysts, Science Team, Public
Analysts
Sub-systems:
Final Product Generator

Level-1b Sources
- Level-1b SSOID matches
- Level-1b Images

Level-3 Sources
- Level-3 Images

QA data and reports

IRSA

Archive
- Ops archive data
- IRSA source lists
- Atlas images
- Level-1b frames
- Refined, value-added source lists

FPG

Manual process
Development Status

- Exec: Parameters, stdout/err I/O logging, job control
- Ingest: Depacketize, decompress, create FITS files
- ICal: Static instrumental calibration with dummy cal data
 - Bias, flats, darks, mask, sky offset, linearity
- DetEx: Detection and simple aperture photometry and centroiding
- Prex: Pattern match, tie to 2MASS, inter-band corrections
- Coadd: Upsampling and distortion correction
- QA: Dynamic web page construction with Catalyst
- Cluster: Four nodes, Condor (job dispatch)
- Network: Planned topology in place
 - Com test measured 80Mbit/s between JPL and IPAC
- Backup: Participating in IPAC-wide backup process
Ops Archive Layout

Standard file naming scheme
Standard path structure
Local vs. global storage
Symlinks
Versioning
Ops Archive Layout

• Standard file naming scheme

/Standard path / base name - band - type [- variety] . format

 • Standard path: see next
 • Base name
 – Frame ID: scanID+frame no., e.g. “12345a123”
 » Scan ID equals name of half-orbit where most of the scan occurs. Provided by MOS meta-data.
 » Frame number is computed by ingest based on scan start/stop times in MOS meta-data
 – Coadd ID: TBD
 – Calibration images: ifrcal
 – Etc.
 • Band: “w1”-”w4”
 • Type
 – “int” = intensity image
 – “unc” = uncertainty image
 – “posref” = Prex position ref. catalog
 – Etc.
 • Variety: optional sub-type specification, often used for image levels
 • Format: mostly “.tbl”, “.fits”

 – E.g. /wise/fops(scan/5a/12345a/fr/123/12345a123-w2-int-2b.fits
Ops Archive Layout
• **Work directories are node-local but globally accessible**
 – The work symlink in the Ops Archive frame pipeline output directory points to NFS-exported node-local storage. E.g. *these all represent the same location on disk:*

 Ops Archive symlink: /wise/fops/scans/1a/00101a/fr/007/work
 Global NFS Export: /compute/wcnod01/wise/fops/scans/1a/00101a/fr/007/work
 Visible only on wcnod01: /local/wise/fops/scans/1a/00101a/fr/007/work

 – Access through /local will often be faster than using NFS and will reduce LAN traffic
 – Users will access the data through the /wise/…/work symlink

• **Scan group symlinks provide scaling and load balancing**
 – Scan group symlinks may point to different automounted NFS-exported partitions
 – Allows for scan/frame pipeline data to be spread over up to 20 devices. E.g.

 /wise/fops/scans/1a ➞ server1:/exports/wise/fops/scans/1a
 /wise/fops/scans/1b ➞ server2:/exports/wise/fops/scans/1b
 /wise/fops/scans/2a ➞ server3:/exports/wise/fops/scans/2a

• **Frame pipeline output may be versioned**
 – Data from previous runs which we may wish to save moved into a version
 /wise/fops/scans/1a/00101a/fr/007/v1
 – Current, up-to-date data always available in the parent directory, which is also given a version symlink

 /wise/fops/scans/1a/00101a/fr/007/v2 ➞ .
Data Throughput and Sizes

Sizing assumptions
Ops network, archive and backup
Network loading
Archive volume
CPU times
Data Throughput and Volume

- Sizing assumptions (rounded)
 - Level-0 frameset (including meta data): 14 MB
 - Level-1 frameset = L0 * 3: 42 MB
 - Ops coadd set = L1 * 4: 168 MB
 - Ops coadds tiling sky: 70,000
 - New ops coadds per day: 500
 - Framesets per ops coadd: 20
 - Framesets per day: 7100
 - 6 month mission framesets: 1,300,000
 - Ingest per frameset: 5 seconds
 - Scan/frame pipeline per frameset: 4 minutes
 - Partial scan/frame pipeline per frameset: 20 seconds
 - Coadd per frameset: 3 minutes
 - Processing cores: 200
 - Processing nodes: 25
 - Deliveries per day: 4
 - Compressed raw telemetry per day: 25 GB
 - Average compression ratio: 2
 - Source list table, frameset: 5 MB
 - Source list table, coadd: 50 MB
Data Throughput and Volume

- **Ops Network, Archive and Backup Volume GB/Day**

<table>
<thead>
<tr>
<th></th>
<th>Network</th>
<th>Archive</th>
<th>Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>30</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Out</td>
<td>120</td>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>Ingest:</td>
<td>30</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Scan/Frame:</td>
<td>120</td>
<td>350</td>
<td>40</td>
</tr>
<tr>
<td>Ops Coadd:</td>
<td>500</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>QA and Misc:</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Daily Total:</td>
<td>660</td>
<td>630</td>
<td>502</td>
</tr>
<tr>
<td>6 Month Total:</td>
<td>90,000</td>
<td>30,000</td>
<td>uncompressed</td>
</tr>
</tbody>
</table>

- **Network bandwidth**
 - Assume ops go dark for 8 hours/day, so a processing day is 16 hours
 - \(~1,400 \text{ Gbytes/day} = \sim 200 \text{ Mbits/sec average}\)
 - Assume sustained peak load is 5 times the average, implies we need to support \(~1 \text{ Gbit/sec}.)
 - Assume a network can be no more than 50% loaded to sustain a given rate, implies **we need \sim 2 \text{ Gbit/sec rated network capacity}**
 - Achievable with careful design and cheap hardware
Data Throughput and Volume

- 6 Month Permanent Archive Volume (uncompressed)
 - Raw + level-0: 30 TB
 - Level-1b: 60 TB
 - Atlas: 20 TB (2048*2048 1.375")
 - Catalogs, meta-data: 10 TB

- Ops Processing Times
 - Ingest: 7100 framesets/day * 5 s/frameset / 4 cores
 = ~2.5 hours/day
 - Scan/frame: 240s/frameset * 7100 framesets/day / 200 cores
 = ~2.5 hours/day
 - Ops Coadd: 500 coadd/day * 20 framesets/coadd * 180 s/frameset / 200 cores
 = ~2.5 hours/day
 - 100% pad implies processing can be done in 16 hours
Software Management

Coding Standards
Issue Tracking
Revision Control
Builds and Deliveries
Software Management

• Coding standards
 – Revision number in code, binary, and output messages
 – Error and warning message format
 – Error and warning to stderr
 – Termination status
 – FITS images/tables via CFITSIO, IPAC table files
 – Languages
 • Fortran 95 (g95 v0.91+)
 • Perl (v5.10)
 • C95 plus GNU extensions (gcc v3 or 4)
 • IDL (v6.2+)
 – Prototype, analysis code and QA, prefer not to have in ops pipeline code
 – Difficult to meet coding standards
 – Requires license server
 – Coding practices
 • Commenting, structure, variable naming, etc.
 • Functionality isolation
 • Reduce code duplication
Software Management

• Issue tracking with Roundup
 – FOSS, SQLite backend, Python implementation
 – Simple web interface, customizable categories, resolution tags, etc.
 – Track s/w and doc bugs, feature requests
 – Elevate some issues to project level

List of issues

<table>
<thead>
<tr>
<th>ID</th>
<th>Activity</th>
<th>Title</th>
<th>Status</th>
<th>Creator</th>
<th>Assigned To</th>
</tr>
</thead>
<tbody>
<tr>
<td>468</td>
<td>2 minutes ago</td>
<td>Donec consequat convallis quam</td>
<td>unread</td>
<td>admin</td>
<td>epsilon</td>
</tr>
<tr>
<td>288</td>
<td>2 minutes ago</td>
<td>Vivamus tristique</td>
<td>done-cbb</td>
<td>admin</td>
<td>demo</td>
</tr>
<tr>
<td>228</td>
<td>2 minutes ago</td>
<td>Donec consequat convallis quam</td>
<td>done-cbb</td>
<td>admin</td>
<td>bata</td>
</tr>
<tr>
<td>136</td>
<td>2 minutes ago</td>
<td>Suspenderis et turgis</td>
<td>testing</td>
<td>admin</td>
<td>epsilon</td>
</tr>
<tr>
<td>69</td>
<td>2 minutes ago</td>
<td>Donec consequat convallis quam</td>
<td>deferred</td>
<td>admin</td>
<td>epsilon</td>
</tr>
<tr>
<td>477</td>
<td>2 minutes ago</td>
<td>Vestibulum gravida</td>
<td>deferred</td>
<td>admin</td>
<td>admin</td>
</tr>
<tr>
<td>472</td>
<td>2 minutes ago</td>
<td>Sed convallis vehicula felis</td>
<td>deferred</td>
<td>admin</td>
<td>beta</td>
</tr>
<tr>
<td>355</td>
<td>2 minutes ago</td>
<td>Fusce pede enim, nonummy sit amet,</td>
<td>done-cbb</td>
<td>admin</td>
<td>admin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dapibus a, blandit eget, metus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>2 minutes ago</td>
<td>Amecn xen felis</td>
<td>testing</td>
<td>admin</td>
<td>epsilon</td>
</tr>
<tr>
<td>282</td>
<td>2 minutes ago</td>
<td>Nam est peata erat</td>
<td>unread</td>
<td>admin</td>
<td>alpha</td>
</tr>
<tr>
<td>196</td>
<td>2 minutes ago</td>
<td>Integer etul quam, mattis ac vestibulum</td>
<td>in-progress</td>
<td>admin</td>
<td>admin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sed, egestas quis, maurois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>2 minutes ago</td>
<td>Nam adia mauro, dignissim vitae, eleffend</td>
<td>in-progress</td>
<td>admin</td>
<td>epsilon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eu, consectetuer si, risus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>2 minutes ago</td>
<td>Integer etul quam, mattis ac vestibulum</td>
<td>deferred</td>
<td>admin</td>
<td>bata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sed, egestas quis, maurois</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Management

• Revision control with Subversion (SVN)
 – Widely used
 – CL and web interface
 – Code and document version tracking
 – Tag releases for easy recall of complete code state
 – Branches for bug fixes in operational code

• Builds and Deliveries with Make
 – Idiosyncratic, but widely used and well known
 – Makefile templates make user makefiles simple
 EXECLIST = sfprex
 FLIST = sfprex.f
 – Links in standard libraries, include files, etc.
 – Maintains build isolation
 – Build and install is “make install CFG=ops”
Software Management

• **Build Isolation**
 – Want to be able to run with multiple independent build configurations
 – Associate a configuration with a target directory

 | Configuration | Description | Directory |
 |---------------|--------------------------------------|-------------------|
 | Ops | operational | /wise/base/deliv/ops |
 | Dev | global development area | /wise/base/deliv/dev |
 | Int | integration for next release | /wise/base/deliv/int |
 | Tim/dev | personal development area | /wise/base/deliv/tim/dev |

 – Build/link code to resolve dependencies (libraries, modules, include files) strictly within the target configuration directory hierarchy
 – Makefile templates enforce isolation
 – User configuration controlled by environment variables
 – “Newcfg” utility allows users to switch between configurations
 – Wrappers report configuration in use in output messages
Software Management

- Build version tracking: “What version am I running?”
 - Wrappers print out configuration and release tags
 E.g. “CFG=**ops**, Release=**ops-v1.1**”
 - Subversion ties a release tag to all constituent code revisions. Any
tagged release can be regenerated from the repository
 - Delivered code source or binaries have SVN revision number
 embedded
 version => 'Id: wsfpipe 428 2008-01-08 02:19:48Z tim $'
 - For important release builds, “make” starts with repository checkout
 make install CFG=ops RELEASE=ops-v1.1
Software Management

• Formal builds
 - Procedure
 - **CCB declares release.** Candidate release code in dev.
 - **Code freeze declared.** Further changes require CCB permission.
 - **Time passes.** Informal use and testing.
 - **Integration build.** “make install RELEASE=ops-v1.0 CFG=int”
 - RTB’s run on int.
 - CCB approves build.
 - **Operations halted.** Current ops build saved.
 - **Ops build.** “make install RELEASE=ops-v1.0 CFG=ops”
 - RTB’s run on ops.
 - CCB approves return to operations.
 - Adherence increases until full compliance prior to release 3
 - Code changes following a release require CCB approval
 - CCB comprised of local astronomers and engineers
Software Management

• **CCB**
 – Composed of WSDC key astronomers and engineers
 • Tim, Roc, Davy, ???
 • Add project-level delegate for key builds/releases
 – Evaluate
 • Changes appropriate for inclusion in ops code?
 • Build ready for delivery?
 • Hardware changes properly planned and appropriate?
 – Formed prior to version 2 release
 – Strictness increases over internal releases between versions 2 and 3 until strict change control in place prior to version 3
Development Schedule

The IPAC Advantage
Code Maturation
Phase-in Strategy
Project Milestones
Capability Phase-in Schedule
Development Schedule

• The IPAC Advantage
 – Close interaction between paired cogE’s and cogSci’s
 – Heritage
 • Many astronomers and engineers with experience in large, automated surveys
 • Large existing code base to use as model for new development
 – IPAC System Group (ISG)
 – Infrared Science Archive (IRSA)
Development Schedule

• **Code Maturation**
 – **Prototype**
 • Almost anything goes
 • Support data flow, key interfaces and downstream functionality
 – **Preliminary**
 • Early production code base
 • Meets most coding standards
 • Under revision control
 • Probably not feature complete nor ready for requirements verification
 – **Complete**
 • Feature complete
 • Adheres to coding standards
 • Ready for requirements verification and RTB’s
 – **Mature**
 • In use in the “complete” state for application-specific interval
Development Schedule

- **Phase-in Strategy**
 - Feature set at each version matched to ...
 - Project activities, particularly instrument development and testing, and Mission Scenario testing
 - Support for future development of dependent apps
 - Estimated development time and length of maturation period
 - Staffing profile
 - Parallel development of WSDS subsystems
 - By end of FY08, several development tracks will be underway simultaneously
 - As existing code matures developers can pick up new tasks
 - New hires pick up new tasks; minimize code hand-offs
 - Limited simultaneous development by one developer gives schedule flexibility at a cost of small efficiency loss
Development Schedule

• Project milestones most important to the WSDC
 – Simulation data deliveries: Summer ‘07 - Fall ‘09
 – WSDC CDR: Jan. 29-30 ‘08
 – Ground detector/payload characterization: Spring ‘08 - Fall ‘08
 – Mission scenario testing: Oct. ‘08 - June ‘09
 – ORR: Sept. 18 ‘09
 – Launch, IOC: Nov. 1 ‘09 - Dec. 1 ‘09
 – Survey ops: Dec. 2 ‘09 - June 1 ‘10
 – Preliminary data delivery: Dec. 1 ‘10
 – Final data delivery: Nov. 2 ‘11
Development Schedule

• Capability Phase-in Schedule
 – Version 0 Oct. 15 ‘07
 • Supports: Throughput testing, CDR
 • Capabilities
 – Frame pipeline: proto
 – Ingest: proto
 – Cluster: proto
 – Exec: prelim
 – SFPRex: prelim
 – ICal: proto
 – Coadd: proto
 – DetEx: proto
Development Schedule

• Capability Phase-in Schedule (continued)
 – Version 1 July 17, ‘08
 • Supports: MST 2 - End-to-end testing
 • Capabilities:
 – Cluster: prelim
 – Storage: proto
 – QA: proto
 – Multi-frame pipeline: proto
 – Archive: proto
 – Ingest: prelim
 – ICal: prelim
 – Pcal: proto
 – Coadd: prelim
 – DetEx: prelim
 – Frame pipeline: complete
 – Scan pipeline: proto
Development Schedule

• Capability Phase-in Schedule (continued)
 – **Version 2** Feb. 28, ‘09
 • Supports MST 6, 7 - Load Volume Tests
 • Capabilities:
 – QA: prelim
 – Archive: prelim
 – SSOID: prelim
 – Exec: complete
 – Multi-frame pipeline: complete
 – Ingest: complete
 – ICal: complete
 – PCal: prelim
 – Coadd: complete
 – DetEx: complete
 – Frame pipeline: mature
Development Schedule

• Capability Phase-in Schedule
 – **Version 3** Aug. 10 ‘09
 • Supports ORR, Launch, IOC
 • Capabilities:
 – QA: complete
 – SSOID: complete
 – PCal: complete
 – Cluster: mature
 – Storage: mature
 – Archive: mature
 – Exec: mature
 – Multi-frame pipeline: mature
 – Ingest: mature
 – ICal: mature
 – Coadd: mature
 – DetEx: mature
 – FPG: prelim
Development Schedule

• Capability Phase-in Schedule
 – Version 3.5 Jan. 26, ‘10
 • Support: Response to IOC, survey operations, preliminary data release
 • Capabilities:
 – QA: mature
 – SSOID: mature
 – PCal: mature
 – FPG: complete
 – Version 4 Oct. 18, ‘10
 • Support: Final product release
 • Capabilities:
 – FPG: mature
Design Issues and Concerns

- Hardware scaling
- Coadd run times vs. duty-cycle
- On-orbit detector behavior
- Loss of bands during ops
- Parallel runs required during ops to prepare for preliminary release