
 
Wide-field Infrared Survey Explorer 

 

 

Subsystem Design Specification 
 

Dynamic Flat-field Estimation (compflat) 
 

Version 1.9, 29-July-2009 
 

 
Prepared by:  Frank Masci 

 
 

 
Infrared Processing and Analysis Center 
California Institute of Technology 
 
WSDC D-D021 



 2 

 
 
 
Concurred By: 
 
 
 
 
Roc Cutri, WISE Science Data Center Manager 
 

 
 

Tim Conrow, WISE Science Data Center Lead Architect  
 
 
 
 
Frank Masci, WISE Science Data Center Cognizant Engineer/Scientist 
 

 
 
Stefanie Wachter, WISE Science Data Center Instrument Calibration Scientist 
 

 
 
Deborah Padgett, WISE Science Data Center Instrument Calibration Scientist 
 

 
 
Carl Grillmair, WISE Science Data Center Instrument Calibration Scientist 
 
 
 
 

 
 

 



 3 

 
 

Revision History 
 

 
Date Version Author Description 

January 12, 2009 1.0 Frank Masci Initial Draft 
January 14, 2009 1.2 Frank Masci Implemented robust trimmed 

average and standard-deviation 
of input stack  

January 15, 2009 1.3 Frank Masci QA metrics and plots on final 
products 

January 16, 2009 1.4 Frank Masci Implemented more flexible 2D 
surface fitter for –method 2 and 
–fltnorm option 3. 

February 10, 2009 1.5 Frank Masci Fixed flipping bug in y axis 
numbering for 2d surface fit 
subroutine for –fltnorm 3. 

June 6, 2009 1.6 Frank Masci Implemented filtering of input 
frame list according to 
FDYNAFLG FITS keyword - 
inserted upstream by ICal. 
New switch: –filt can turn 
filtering on/off. 

July 22, 2009 1.8 Frank Masci Added new command-line 
option for flatcal: –rm 
<relative min. sigma to set> 

July 28, 2009 1.9 Frank Masci Tweaks to output QA log-
histogram plots – flag zero 
values. 

    
    

 



 4 

Table of Contents 
 

1. INTRODUCTION .....................................................................................................6 

1.1 Purpose and Scope........................................................................................................... 6 

1.2 Document Organization .................................................................................................. 6 

1.3 Applicable Documents..................................................................................................... 6 

1.4 Requirements................................................................................................................... 7 

1.5 Acronyms ......................................................................................................................... 8 

2 OVERVIEW...............................................................................................................9 

3 INPUT/OUTPUT SPECIFICATION...........................................................................9 

3.1 Inputs ............................................................................................................................... 9 

3.2 Input List of Science Frames......................................................................................... 12 

3.3 Frame Filtering.............................................................................................................. 12 

3.4 Output Files ................................................................................................................... 13 

4 COMPFLAT PROCESSING AND ALGORITHMS ..................................................13 

4.1 Overview of Processing Steps........................................................................................ 13 

4.2 Frame Pre-normalization.............................................................................................. 14 

4.3 Robust Metrics for Outlier Trimming .......................................................................... 15 

4.4 Trimmed Average and Standard-Deviation Computation .......................................... 15 

4.5 Post Normalization ........................................................................................................ 16 

4.6 Responsivity Mask......................................................................................................... 17 

5 QUALITY ASSURANCE OUTPUTS ........................................................................18 

5.1 Metrics ........................................................................................................................... 18 

5.2 Plots................................................................................................................................ 21 



 5 

6 USAGE EXAMPLE ..................................................................................................21 

7 TESTING .................................................................................................................23 

8 LIENS ......................................................................................................................23 



 6 

 
1. INTRODUCTION 

1.1 Purpose and Scope 
 
This Subsystem Design Specification (SDS) document describes the basic requirements, 
assumptions, definitions, software-design details, algorithms, QA, and necessary interfaces for 
the compflat subsystem of the WISE Science Data System (WSDS). It will be used to trace the 
incremental development of this subsystem, and contains sufficient detail to allow future 
modification or maintenance of the software by developers other than the original developer. 
This document is an evolving document as changes may occur in the course of science 
instrument hardware design, characterization and maturity of operational procedures. 
 
The purpose of compflat is to create responsivity (flat-field) calibration products from on-orbit 
frames, i.e., in a dynamic manner. It reads in a list of pre-calibrated and pre-filtered frames 
optimized for flat-field estimation, corrects each for possible large scale gradients, and uses 
either of two methods to compute a responsivity map: the gradient method (as implemented in 
the flatcal module and described in a separate SDS document; see §1.3), or the classic frame-
stacking method. The flat product can be normalized using either a single median, a low-pass 
median filter, or a 2-D surface fit. The latter enables one to remove non-uniform (and non-
responsivity related) illumination patterns. Ancillary products are an uncertainty map and a mask 
indicating pixels for which a responsivity estimate was unreliable, not possible, or abnormally 
low/high. QA metrics and plots are also generated. 
 
1.2 Document Organization 
 
This document is organized along the major themes of Requirements; Other Software Interfaces; 
Assumptions; Functional Descriptions and Dependencies; Input/Output; Algorithm Descriptions; 
Testing; and Liens.  
 
The material contained in this document represents the current understanding of the capabilities 
of the major WISE systems and sub-systems. Areas that require further analysis are noted by 
TBD (To Be Determined) or TBR (To Be Resolved). TBD indicates missing data that are not yet 
available.  TBR indicates preliminary data that are not firmly established and subject to change. 
 
1.3 Applicable Documents 
 

• WSDC Functional Requirements Document, WSDC D-R001 (FRD – Level 4 
Requirements): 
http://web.ipac.caltech.edu/staff/roc/wise/docs/WSDC_Functional_Requirements_all.pdf 

 
• WSDS Functional Design Document, WSDC D-D001 (FDD): 

http://web.ipac.caltech.edu/staff/roc/wise/docs/WSDS_FDD_v1.pdf 
 



 7 

• WSDC Science Data Quality Assurance Plan, WSDC D-M004 (QAP): 
http://web.ipac.caltech.edu/staff/roc/wise/docs/QA_Plan_WSDC_2007-03-01.pdf 

 
• Software Interface Specification (SIS), WSDC D-I101 – Frame Processing Mask: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal01.txt  
 

• Software Interface Specification (SIS), WSDC D-I137 – “Dynamic flats” QA metadata: 
http://web.ipac.caltech.edu/staff/fmasci/home/wise/QAoutput_icl06.txt 

 
• Instrumental Calibration Peer Review (09/28/2007): 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal_PeerReview.pdf 
 
• Instrumental Calibration Critical Design Review (01/29/2008): 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal_CDRJan08.pdf 
 
• Software Interface Specification (SIS) – flatcal: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/flatcal_specs.pdf 
 

• Subsystem Design Specification (SDS), WSDC D-D012 – flatcal: 
http://web.ipac.caltech.edu/staff/fmasci/home/wise/sds-flatcal.pdf 

 
• Subsystem Design Specification (SDS), WSDC D-D018 – instruframecal: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/sds-wsdc-D018-ical.pdf 
 
1.4 Requirements 
 
Below we summarize the requirements impacted by flat-field estimation in general. These are 
from the WSDC Functional Requirements Document (§1.3). 
 
• L4WSDC-042: The WSDS Pipeline processing shall remove the instrumental signature from  
Level 0 image frames.  
• L4WSDC-037: The WSDC Pipelines subsystem shall convert raw WISE science and  
engineering data into calibrated images and extracted source lists from which the preliminary  
and final WISE data products will be derived.  
• L4WSDC-039: Within 3 days from receipt of a given data set at the WSDC all data shall be  
processed through the WSDS Scan/Frame pipeline which performs basic image calibration and  
source extraction from on images from individual orbits. The results of this processing step  
shall be Level 1 source extractions and image data, which are loaded into the WISE Level 1  
extracted Source Working Database (L1WDB) and Image Archive allowing access by the  
WISE Science Team for external quality assessment.  
• L4WSDC-024: The WSDC shall generate and maintain an archive of the calibrated, single  
epoch WISE images for the duration of the project for use by the Project Team.  The purposes  
of this archive are quality assurance, transient analysis and moving object identification. Self-  
derived Demonstration Define duration of project. 



 8 

• L4WSDC-012: Flux measurements in the WISE Source Catalog shall have a SNR of five or  
more for point sources with fluxes of 0.12, 0.16, 0.65 and 2.6 mJy at 3.3, 4.7, 12 and 23  
micrometers, respectively, assuming 8 independent exposures and where the noise flux errors  
due to zodiacal foreground emission, instrumental effects, source photon statistics, and  
neighboring sources (traceable to Level-1).  
• L4WSDC-013: The root mean square error in relative photometric accuracy in the WISE  
Source Catalog shall be better than 7% in each band for unsaturated point sources with  
SNR>100, where the noise flux errors due to zodiacal foreground emission, instrumental  
effects, source photon statistics, and neighboring sources.  This requirement shall not apply to  
sources that superimposed on an identified artifact (traceable to Level-1). 
 
1.5 Acronyms 
 
2-D  Two Dimensional 
ANSI  American National Standards Institute 
FDD  Functional Design Document 
FRD  Functional Requirements Document 
FITS  Flexible Image Transport System 
I/O  Input / Output 
ISO  International Organization for Standardization 
ICAL  Instrumental CALibration   
IPAC  Infrared Processing and Analysis Center 
JB  Jarque-Bera test statistic 
LSB  Least Significant Bit 
MED  Median 
NaN  Not-a-Number 
RMS  Root Mean Square deviation from the mean 
SD  Standard Deviation 
SDS  Subsystem Design Specification 
SIS  Subsystem Interface Specification 
SNR  Signal-to-Noise Ratio 
SVG  Scalable Vector Graphics format 
TBD  To Be Determined 
TBR  To Be Resolved 
QA  Quality Assurance 
QAP  Quality Assurance Plan 
WDB  Working Data Base 
WISE  Wide-field Infrared Survey Explorer 
WSDC  WISE Science Data Center 
WSDS  WISE Science Data System 
 
 



 9 

2 OVERVIEW 

WISE shall downlink image data frames consisting of 1024 × 1024 pixels for bands 1, 2 and 3 
with a projected size of 2.75 arcsec/pixel, and 512 × 512 pixels for band 4 with a size of 5.5 
arcsec/pixel. This corresponds to image dimensions of ≈ 47 × 47 arcmin on the sky for all bands. 
Responsivity correction is one of the important steps in the instrumental calibration (ICAL) 
pipeline (see document WSDC D-D018 referenced in §1.3). In order to capture instrumental 
“gain-like” variations, it is important to derive calibrations that are matched as close as possible 
to the science frames, i.e., in a dynamic manner. The purpose of compflat is to compute a 
responsivity map given any number of input frames. It is not confined to solely use on-orbit data. 
compflat is a script written in Perl with calls to modules written in Fortran and ANSI/ISO C++. 
 
 

3 INPUT/OUTPUT SPECIFICATION 

3.1 Inputs 
 
compflat takes all of its input from the command-line, which is set up by a startup wrapper script 
and controlled by the WSDS pipeline executive, or, it can be set up manually and executed 
standalone. Prior to parsing the command-line inputs, default values for the optional input 
parameters are assigned. Table 1 summarizes all command-line inputs, their purpose and default 
assignments. 
 
 
Option Description Data-type 

/ Format 
Units Default 

-imglist Input text file name containing 
list of pre-calibrated and pre-
filtered 32-bit / pixel FITS 
intensity images 

Char*256 Null Required input 

-unclist Input text file name containing 
list of 32-bit / pixel FITS 
uncertainty (1-sigma) images 

Char*256 
 

Null None used 

-msklist Input text file name containing 
list of 32-bit / pixel (long int) 
FITS mask images for flatcal 
<-method 1> 

Char*256 
 

Null None used 

-filt Switch to filter frames from 
input lists using FDYNAFLG 
FITS keyword flag if present; 
independent of method 

Null Null No filtering performed 

-m_fcal Mask template bitstring 
[decimal equiv] specifying bits 
to omit for flatcal processing 
<-method 1> 

I*4 int 
 

Null 0 => no flagging 

-method Responsivity estimation method: 
1 = slope-fitting method (flatcal 
module); 2 = classic frame 

I*2 int 
 

Null 1 



 10 

stacking method 
-n_fcal Namelist file for flatcal 

<-method 1> 
Char*256 
 

Null None used 

-lt_fcal Lower-tail SNR threshold for in-
frame outlier trimming for 
flatcal <-method 1> 

R*4 float 
 

Null 5.0 

-ut_fcal Upper-tail SNR threshold for in-
frame outlier trimming for 
flatcal <-method 1> 

R*4 float 
 

Null 5.0 

-lf_fcal Minimum median frame signal 
to retain for flatcal <-method 1> 

R*4 float Image units -9.9e+25 

-hf_fcal Maximum median frame signal 
to retain for flatcal <-method 1> 

R*4 float Image units 9.9e+25 

-r_fcal Switch to rescale input 
uncertainties to obtain 
reasonable chi-squares and 
parameter uncertainties; for 
flatcal <-method 1> 

Null Null Not performed 

-rm_fcal Minimum value of relative 
sigma = rm_fcal*median such 
that if robust sigma from 
percentiles in residuals < this, 
reset sigma to this; only used if 
no input prior uncs provided for 
flatcal <-method 1> 

R*4 float 
 

Null 0.001 

-nmed Read first -nmed frames from 
input list to use for computing 
median/robust-sigma for outlier 
detection to support method 2; 
depends on available memory 

I*2 int Null 300 

-lthres Lower-tail threshold (# sigma) 
for outlier rejection to support 
method 2 

R*4 float Null 4.0 

-uthres Upper-tail threshold (# sigma) 
for outlier rejection to support 
method 2 

R*4 float Null 4.0 

-fthres Symmetric threshold (# sigma) 
for flagging lo/hi responsivity 
values in final flat and recording 
in output mask <-fltmsk> for 
method 2. Also used for QA 
meta-table metrics 

R*4 float Null 5.0 

-normeth Method for normalizing input 
frames to support method 2; 1 
=> single frame median; 2 => 
robust plane fit; 3 => none; 

I*2 int Null 3 

-svbgrid Number of partitions along an 
axis of final flat frame for 
median block-filter 
normalization; to support 
method 2 

I*2 int Null 5 

-ksize Size of Gaussian smoothing 
kernel as a fraction of median-

R*4 float Null 1.5 



 11 

filter window length set by <-
svbgrid>; to support method 2 

-ksig sigma_x, sigma_y of Gaussian 
smoothing kernel as a fraction 
of <-ksize> in x, y respectively; 
to support method 2 

R*4 float Null 0.5 

-fltnorm Method for normalizing final 
flat to support method 2; 1 => 
single global median; 2 => 
median block filter over <-
svbgrid> grid; 3 => 2D 
polynomial fit; 4 => none 

I*2 int Null 4 

-order Order of polynomial for option 
<-fltnorm 3>; to support meth 2 

I*2 int Null Default=3 => quadratic fit 

-outdir Pathname for ancillary FITS file 
products and working directory 

Char*256 Null Required input 

-archdir Pathname for archivable 
products 

Char*256 
 

Null –outdir <path>  

-qadir Pathname for output QA 
diagnostic files 

Char*256 Null –outdir <path> 

-qameta Filename for QA meta-data to 
store metrics on final flat-field 
products. Will be written under 
<-archdir> 

I*2 int Null meta-flat.tbl 

-fltprd Output flat-field image product 
FITS filename 

Char*256 Null Required input 

-fltunc Output flat-field uncertainty 
image FITS filename 

Char*256 Null Required input 

-fltmsk Output 8-bit mask FITS 
filename for bad responsivity 
estimates 

Char*256 Null Required input 

-o3_fcal Optional QA: intercept-fit image 
FITS filename from flatcal 
<-method 1> 

Char*256 Null None generated 

-o4_fcal Optional QA: intercept-fit 
uncertainty image FITS 
filename from flatcal 
<-method 1> 

Char*256 Null None generated 

-o5_fcal Optional QA: co-standard 
deviation (between slope and 
intercept) image FITS filename 
from flatcal <-method 1>: 
sign[cov] sqrt[|cov|]) 

Char*256 Null None generated 

-o7_fcal Optional QA: output chi-square-
fit image FITS filename from 
flatcal <-method 1> 

Char*256 Null None generated 

-o8_fcal Optional QA: output #points-fit 
image FITS from flatcal 
<-method 1> 

Char*256 Null None generated 

-o9_fcal Optional QA: output frame 
medians table-file name from 
flatcal <-method 1> 

Char*256 Null None generated 

-qa Switch to generate QA metrics Null Null 0 



 12 

and plots on flat-field products 
-dbg Switch to print debug info. to 

stdout 
Null Null 0 

-v Switch to increase verbosity to 
stdout 

Null Null 0 

Table 1: Command-line inputs and options 
 
 
Command-line inputs suffixed by a “_fcal” in Table 1 are exclusively used for the flatcal module 
(see document WSDC D-D012 referenced in §1.3). If compflat is executed with a “-help2” (e.g., 
as “compflat –help2”), a command-line synopsis and tutorial is printed on the screen. This is a 
summary of the information presented in Table 1. Execution using “–help” yields a shorter 
summary of the I/O. 
 
3.2 Input List of Science Frames 
 

We require that the input frames for computing the responsivity have been pre-calibrated from a 
first pass run of the instruframecal pipeline. These are intermediate products that have been 
corrected for electronic signatures, dark current, and non-linearity (see Figure 1 in document 
WSDC D-D018). 
 
3.3 Frame Filtering 
 
We need to ensure the input list is optimal for responsivity estimation. In other words, frames 
affected by on-orbit anneals, excessive cosmic-rays, high source density, and bright saturating 
sources have been removed. The first pass run of the instruframecal pipeline (if run in its special 
“dynacal” mode to save linearized products) adds a keyword FDYNAFLG with value 0 or 1. 0 
implies the frame did not satisfy the filtering thresholds in and 1 implies it did, in which case 
new frame lists are constructed for use by compflat. This filtering is only performed in the –filt 
command-line switch is specified on input. Furthermore, if this switch is specified and the 
FDYNAFLG keyword does not exist in an input frame header, a warning is issued and it 
assumed that the frame is unusable for flat-field estimation purposes. 
 
Below we list the metrics and their (unrealistic) thresholds used for the filtering in instruframecal 
at the time of writing. These are from a calibration file, e.g., simcal-meta.tbl stored in the WSDS 
operations archive. 
 
 ical:fdtanneal  0.0             Closest time since last anneal [sec] 
 ical:ffpatemp   34.0            Maximum FPA Temperature [K] 
 ical:fminelat   -90.0           Minimum ecliptic latitude [deg] 
 ical:fmaxelat   90.0            Maximum ecliptic latitude [deg] 
 ical:fminglat   -90.0           Minimum galactic latitude [deg] 
 ical:fmaxglat   90.0            Maximum galactic latitude [deg] 
 ical:fnspikelo  258064          Max. number of low-tail outliers (glitches) 
 ical:fnspikehi  258064          Max. number of high-tail outliers (glitches) 
 ical:fnumsat    258064          Max. number of saturated pixels (at any SUR sample) 
 ical:fminillum  0.0             Minimum median illumination/pixel [DEB DN] 
 ical:fmaxillum  1.0E+5          Maximum median illumination/pixel [DEB DN] 
 ical:fmaxrmsmad 1.0E+5          Maximum tolerable pixel RMS (from intSigMADMED) 



 13 

 ical:fmaxrmspti 1.0E+5          Maximum tolerable pixel RMS (from intMed16ptile) 
 ical:fmaxrat    5               Maximum tolerable ratio: (84%tile-Med)/(Med-16%tile) 
 
The actual frame values are then compared to the above thresholds using the following 
conditional in instruframecal. If all are satisfied, FDYNAFLG is set to 1. 
 

if( ($satpixcount <= $fnumsat) && 
    ($med >= $fminillum) && 
    ($med <= $fmaxillum) && 
    ($rmsmad <= $fmaxrmsmad) && 
    ($hsixteenptile <= $fmaxrmspti) && 
    ($ratio_ptilesmed <= $fmaxrat) && 
    ($numlo <= $fnspikelo) && 
    ($numhi <= $fnspikehi) && 
    ($dtanneal >= $fdtanneal) && 
    ($elat0 >= $fminelat) && 
    ($elat0 <= $fmaxelat) && 
    ($glat0 >= $fminglat) && 
    ($glat0 <= $fmaxglat) && 
    ($fptemp <= $ffpatemp) ) { 
 
    $fdynaflg = 1; 
} 

 
 
3.4 Output Files 
 
There are three FITS image products generated by compflat: the main normalized flat-field 
calibration containing relative responsivity estimates, accompanying uncertainty image, and a 
mask image flagging abnormal values. The uncertainty image contains a 1-sigma error estimate 
in the responsivity for every pixel. The method 1 (flatcal) uncertainty computation requires an 
input list of uncertainty frames to be specified (e.g., priors propagated from pre-processing in the 
instruframecal pipeline), while for method 2 (the stacking method), the output uncertainties are 
computed a posteriori from the data. Algorithms for method 1 are described in a separate SDS 
document: WSDC D-D012, while algorithms for method 2 are described in §4. Quality 
Assurance (QA) diagnostic files are generated if the –qa switch is specified. These consist of (i) 
metrics written to a table specified by –metatbl and archived under –archdir, and (ii) plots in 
SVG format written to the path specified by –qadir. These are discussed in §5. 
 
 

4 COMPFLAT PROCESSING AND ALGORITHMS 

4.1 Overview of Processing Steps 
 
Figure 1 captures the processing flow in compflat. The blue boxes are for method 1 (execution of 
the flatcal module), the red boxes show the steps for method 2 (the frame-stack method), and the 
yellow boxes are generic to the two methods. The algorithm for method 2 is described below. 
The method 1 algorithm is described in a separate SDS document: WSDC D-D012 (see §1.3). 
 



 14 

 
Figure 1: processing flow in compflat script  

 
 

4.2 Frame Pre-normalization 
 
The first step in method 2 is to “regularize” the science frame inputs, or place them on equal 
footing (around unity) in terms of background levels and gradients. This step is optional. Its 
purpose is to provide a better handle on variations between the frames in a stack. In other words, 
the final uncertainty as estimated from the stacked standard deviation will be less subject to 
background level and gradient differences between the frames. The bulk of this variation is 
expected to be non-responsivity related in nature. 
 
Two pre-normalization methods are available: “–normeth 1” divides each frame by its respective 
median pixel value (a constant) and “–normeth 2” computes a robust planar fit (with slope) to 
each frame. By “robust” we mean relatively immune to the presence of bright sources and 
extended structure. The fit is computed using a piecewise non-parametric method whose goal is 
to capture the underlying background level (with possible slope). The planar fit is then divided 
into each respective frame. The –normeth 2 option writes out FITS images of the planar 
background fits into the directory specified by –outdir with name “<infile>_bckgnd.fits”. The 



 15 

normalized (divided) frames are written out with name “<infile>_norm.fits”. Note that –normeth 
3 (the default) implies no pre-normalization. 
 
4.3 Robust Metrics for Outlier Trimming 
 
The first “–nmed” frames from the input list (pre-normalized or not) are then used to compute 
robust (≈outlier-resistant) 1st and 2nd moments of the pixel stacks. These are the median m and a 
robust measure of σ respectively, where σ ≈ 0.5 [q0.84 – q0.16] and the qx are quantiles of each 
pixel-stack distribution. The default for –nmed is 300. The reason why we impose a limit is 
because this step can consume a lot of memory, i.e., all frames need to be stored to efficiently 
compute distribution quantiles. The first –nmed frames should provide an approximate 
(representative) measure of m and σ for the whole input ensemble, assuming of course the input 
frames are randomly listed in terms signal levels. If the number of input frames is less than that 
specified by –nmed, then all frames are used in the stack to compute m and σ. The median of the 
stack is written to a file in FITS format under –outdir with name “<fltprd>_median.fits”. 
 
4.4 Trimmed Average and Standard-Deviation Computation 
 
The robust metrics above are then used to compute an outlier-trimmed average and standard-
deviation for each pixel-stack using all the input frames. So, why not use the median computed 
above instead of a trimmed average? There are two reasons: first, not all the input frames may 
have been used to compute the median due to memory limitations. An average can be built up 
incrementally using minimal resources, regardless of the number of inputs. Second, an average is 
less noisier than a median, in fact it’s ~25% less noisier in terms of its RMS with respect to 
“truth” for the same number of inputs. The procedure is as follows: 
 

1. Compute the minimum and maximum pixel threshold values in each stack beyond which 
a pixel should be declared an outlier. This uses the above robust metrics (m and σ) and 
the user-specified thresholds –lthres <TL> and –uthres <TU>: 

 

     

! 

pmin = m "TL#

pmax = m + TU#                                                                                                  (Eq. 1)
 

 
2. For each FITS frame read from disk, loop through the pixels, and if a pixel with value pi 

satisfies: pi < pmin OR pi > pmax OR pi ≠ pi (i.e., a NaN), then that pixel is flagged an 
outlier and its value is reset to 0. In the process, two internal arrays are incremented to 
store (i) the cumulative sum of the “good” pixel values, and (ii) the cumulative number 
(or stack-depth) of the non-outlier pixels at each location. 

 
3. When all frames have been read and outliers flagged, the cumulative-value and stack-

depth arrays (with outliers effectively squeezed out) are combined to compute an average 
for each pixel. 

 



 16 

4. Steps 2 and 3 are repeated to compute the trimmed standard-deviation image, using the 
trimmed average as input. The trimmed standard-deviation image is then converted to an 
uncertainty image by dividing by the square-root of the stack-depth image. 

 
At the end of this step, the following ancillary products are written under –outdir: an image of 
the trimmed average: <fltprd>_pre.fits; an image of the number of samples used in each stack, 
i.e., the stack-depth: <fltprd>_Nsamp.fits; and the uncertainty image: <fltunc>_pre.fits. The 
suffix “_pre” indicates that these are “pre-normalized” intermediate responsivity products. They 
are written out for debug purposes. 
 
4.5 Post Normalization 
 
The trimmed average and uncertainty image from the previous step are then normalized in order 
to estimate pixel-to-pixel responsivities relative to unity. It’s important that the 1st moment of the 
final pixel responsivity distribution does not deviate systematically from unity and that the 2nd 
moment (variance) is minimal, i.e., there should be no contamination by extraneous non-
responsivity related structure. Otherwise, biases (or flat-fielding residuals) will be introduced 
into the science frames when calibrations are applied. 
 
Low-frequency, non-responsivity related patterns may not have been fully eliminated after the 
trimmed averaging described above. These may be due to other instrumental effects or structure 
in the astrophysical background. They need to be estimated and normalized out if possible. The 
key is determining whether a low-frequency pattern is responsivity related or not. If so, it needs 
to be retained in the final responsivity map. Possible tests include (i) examining if a suspect 
pattern is persistent in time (although transient behavior is still possible), or (ii) if inclusion of 
the low-frequency pattern (transient or otherwise) improves photometric accuracy (e.g., through 
repeatability metrics).   Four methods are available in compflat, specifiable via –fltnorm <1,2,3 
or 4> with default = 4. To ensure the uncertainties remain statistically compatible with the final 
responsivities, these methods also normalize (or recale) the accompanying uncertainty image. 
The methods are as follows: 
 

1. The first option is the simplest and divides through by the median of the trimmed average 
image. In other words, a constant value. This is useful if no extraneous low-frequency 
structure exists. 

 
2. The second option computes a median-block filtered image using an n × n grid with post-

Gaussian smoothing. This yields an image with high-frequency responsivity variations 
smoothed out and any extraneous low-frequency structure retained. The number of 
partitions in the square grid can be set by the –svbgrid <n> specification (default = 5). 
The Gaussian smoothing kernel parameters can be set by –ksize and –ksig, the linear size 
and σ of the kernel respectively, expressed as a multiple of the median filter block length 
n. The smoothed image is written to a FITS file under –outdir named 
<fltprd>_pre_bckgnd.fits. The trimmed average image is then normalized (divided) by 
this image to estimate the relative responsivities at the desired frequency. It’s important 



 17 

that the filter block size n is not made too small. Otherwise, such that real (low-
frequency) responsivity structure will be ‘explained away’ after normalization. 

 
3. The third option involves performing a parametric 2-D polynomial surface fit to the 

trimmed average image. This is performed by calling the PowFit2D module. It uses a 
standard linear-least squares routine to estimate the coefficients Aij of a generic 2-D 
function: 

 

           

! 

f x,y( ) = Aij x
i" j
y
j

j= 0

i

#
i= 0

N

# , 

 
where f(x,y) are the responsivity values, and N is the maximum order with i + j ≤ N. This 
is specified by the –order <N> parameter with default = 3, implying a cubic surface fit. 
The total number of coefficient terms is (N + 1)(N + 2)/2. For details on the underlying 
fitting algorithm, see: 
http://web.ipac.caltech.edu/staff/fmasci/home/statistics_refs/surface-fit.pdf. The surface 
fit is written to a FITS file under –outdir named <fltprd>_pre_bckgnd.fits. The surface fit 
is then divided into the trimmed average image to estimate the relative responsivities at 
the desired frequency. It’s important that the order N is not set too high. Otherwise, real 
(low-frequency) responsivity structure will be ‘explained away’ after normalization. 
Simplest is best, and we expect that N ≤ 4 will serve most cases.  

 
4. The fourth option (the default) performs no post-normalization. This is generally not 

recommended. It only makes sense to not post-normalize if (i) all the input frames were 
pre-normalized (or regularized – see §4.2), and (ii) one is sure that the trimmed average 
image contains no extraneous structure or bias in the pixel distribution that significantly 
deviates from unity. If so, then it could benefit from either of the above three 
normalization methods. 

 
4.6 Responsivity Mask 
 
The end of processing for method 2 consists of creating a bit-mask to record those pixels whose 
responsivity value is abnormally high or low with respect to the full distribution. NaN’s are also 
flagged. The procedure involves flagging pixel values pi in the responsivity map which satisfy: 
 

! 

pi < m "TF#    OR    pi > m + TF#, 
 
where m is the median over all responsivity values and σ is a robust (≈outlier resistant) measure 
of the spread: σ ≈ 0.5 [q0.84 – q0.16], where the qx are distribution quantiles. TF is the SNR 
flagging threshold (parameter –fthres <default=5>) and assumed to be symmetric for the low and 
high tails. Pixels satisfying the above conditions are encoded in an 8-bit FITS mask (–fltmsk 
<outfile>) with values defined as follows: 



 18 

 
Bit # Decimal Equivalent Condition 
0 1 Value is NaN 
1 2 Low responsivity (including dead) 
2 4 High responsivity (hot) 

Table 2: Bit-mask assignments written to –fltmsk <outfile> 
 
All output products are then assembled, renamed according to their desired output names 
specified by –fltprd; –fltunc; and –fltmsk, and propagated to the QA step (see below). 
 
 

5 QUALITY ASSURANCE OUTPUTS 

5.1 Metrics 
 
Quality Assurance diagnostics are only performed if the –qa switch is specified. This is generic 
to the two flat-field estimation methods and is only performed on the primary responsivity and 
uncertainty output products. Below we list the responsivity (flt) and uncertainty (unc) metrics 
written to an output meta-data table in IPAC format (–qameta <outfile> under directory: –
archdir). An example with all columns can be found in WSDC D-I137 (referenced in §1.3). 
Below we only show the metric names and definitions. 
 
 
\ WISE QA metadata for flat-field calibration products 
\ Generated by compflat, v.1.3 on 2009-01-16 at 16:42:58 
\ Definitions of metric identifiers: 
\ flt: flat-field (responsivity) values 
\ unc: flat-field uncertainty values 
\ Metric units pertain to dimensionless responsivity values 
\ FITS file products represented: 
\ 1: /wise/fmasci/testdata/flatcal1/outputs/flat-w1-est.fits 
\ 2: /wise/fmasci/testdata/flatcal1/outputs/flat-w1-unc.fits 
\ 
|name                     |comment 
\ 
\ Flat-field responsivity metrics 
\ 
 flatf:flt:numframes       Number of input frames used                                                                       
 flatf:flt:NumNaN          Number of NaN pixels in responsivity map                                                          
 flatf:flt:Min             flt pixels: Minimum pixel value in flat                                                           
 flatf:flt:Max             flt pixels: Maximum pixel value in flat                                                           
 flatf:flt:Mean            flt pixels: Mean pixel value in flat                                                              
 flatf:flt:Median          flt pixels: Median pixel value in flat                                                            
 flatf:flt:StdDev          flt pixels: Standard (RMS) Deviation from mean 
                                       (unbiased estimate) in flat                        
 flatf:flt:Mode            flt pixels: Mode pixel value (fuzzy) in flat                                                      
 flatf:flt:Med16ptile      flt pixels: Robust sigma from Median - 16%-tile                                                   
 flatf:flt:84-16ptile      flt pixels: Robust sigma from [84%-tile - 16%-tile]/2                                             
 flatf:flt:Skewness        flt pixels: Sample skewness                                                                       
 flatf:flt:Kurtosis        flt pixels: Sample kurtosis                                                                       
 flatf:flt:JBCoeff         flt pixels: Jarque-Bera normality test coefficient; 
                                       larger JBCoeff => more non-normal             
 flatf:flt:Locount         flt pixels: Number of low responsivity pixels 
                                       [< med - 5*sigma = 0.999768435955048]               
 flatf:flt:Hicount         flt pixels: Number of high responsivity pixels 
                                       [> med + 5*sigma = 1.00024104118347]               
\ 



 19 

\ Flat-field uncertainty metrics 
\ 
 flatf:unc:Min             unc pixels: Minimum pixel value in flat uncert                                                    
 flatf:unc:Max             unc pixels: Maximum pixel value in flat uncert                                                    
 flatf:unc:Mean            unc pixels: Mean pixel value in flat uncert                                                       
 flatf:unc:Median          unc pixels: Median pixel value in flat uncert                                                     
 flatf:unc:MeanAccu        unc pixels: Mean accuracy in responsivity; 
                                       = 100*<uncert/responsivty> %                           
 flatf:unc:MedianAccu      unc pixels: Median accuracy in responsivity; 
                                       = 100*MED[uncert/responsivity] % 
 

 
These metrics will enable one to: 
 

• Perform routine health/sanity checks on instrumental gain variations in general; 
• Select appropriate calibration products for the instrumental calibration pipeline; 
• Tune parameters for optimum generation of calibrations from on-orbit data. 

 
Below are descriptions of the not-so-obvious metrics and their purpose. 
 
Mode 
 
This metric represents an estimate of the most frequently occurring responsivity value. It 
represents a “fuzzy” measure since it is based on an approximate binning method and requires a 
sample size of  >~ 500. This is usually always satisfied when all pixels of a WISE frame are 
used, but the estimate will be highly inaccurate for small samples. The method first partitions the 
histogram of all image pixel values into 10 equal area bins (or “10%-tiles”); it then takes the bin 
with the smallest width as the one most probable to contain the mode since this bin is located 
near the peak of the histogram; the median of the data in this bin is then used as an estimate of 
the mode. 
 
Med16ptile & 84-16ptile 
 
These represent robust (≈ outlier/bad-pixel resistant) estimates of sigma using quantile 
differences in the responsivity distribution: q0.5 – q0.16 and 0.5[q0.84 – q0.16] respectively. For 
normally distributed data, these should be approximately equal to the standard deviation. A 
significant discrepancy between the two indicates the distribution is skewed, i.e., there is an 
asymmetry about the central moment. This may be caused by for example, outliers (including 
sources) in the high tail that were not properly filtered during the estimation procedure. 
 
Skewness, Kurtosis & the Jarque-Bera Normality Test 
 
The sample skewness is defined: 
 

! 

s =

pi "µ( )
3

i=1

N

#

N "1( )$ SD

3
, 

 



 20 

where µ and σSD are the sample mean and standard-deviation respectively. The skewness 
provides a relative indicator of the presence of spurious sources/outliers in the responsivity map, 
i.e., that were not properly filtered during the estimation procedure. A perfectly symmetric 
distribution will have s ≈ 0. 
 
The sample kurtosis, in-excess of that of a normal distribution, 3, is defined: 
 

! 

k =

pi "µ( )
4

i=1

N

#

N "1( )$ SD

4
" 3. 

 
The kurtosis is included here since it can be used together with the skewness to define a statistic 
to test for normality of the responsivity distribution. This is called the Jarque-Bera test statistic 
and defined: 
 

! 

JB =
N

6
s
2

+
k
2

4

" 

# 
$ 

% 

& 
' , 

 
where s and k were defined above. For details, see: http://en.wikipedia.org/wiki/Jarque-Bera_test 
The JB statistic can be used to test the null-hypothessis that the data are normally distributed 
with skewness and kurtosis excess = 0. This test is not formally performed here, we only use the 
JB statistic as a relative measure. Large values (relative to measures that are redeemed plausible 
from analysis) indicate a very “abnormal” responsivity distribution and will need to be 
investigated. Also, there is no reason to believe that the underlying population of pixel 
responsivities (from which the data were drawn) should follow a perfect normal distribution. It 
should be close, and the JBCoeff statistic in the QA meta-table will still provide a useful metric 
to weed out the bad cases. 
 
Locount & Hicount 
 
These represent the number of low and high responsivity pixels flagged in exactly the same 
manner when creating the responsivity mask. See description in §4.6. 
 
MeanAccu & MedianAccu 
 
One may be interested in the overall accuracy of a flat-field calibration product. We quantify this 
using the computed uncertainties. Recall that these uncertainties are a posteriori estimates 
computed using the input data, and not from a prior error model. This removes any possible 
incompatibility with the statistical distribution of the input data (i.e., we expect reduced χ2 ≈ 1 
across all pixels). We quantify the overall accuracy using the mean and median relative 
percentage error (or noise-to-signal) in the responsivity f across all pixels: 
 



 21 

! 

MeanAccu =100
1

N

" ( f i)

f i
  %

i=1

N

#

MedianAccu =100 median
" ( f i)

fi

$ 
% 
& 

' 
( 
) 

  %

 

 
5.2 Plots 
 
Two diagnostic plots are generated as part of the QA step. These are in SVG format and written 
to the directory specified by the –qadir command-line input. The generic names are as follows: 
 

• <fltprd>hist.svg : histogram of the final responsivity values: fi. 
 
• <fltunc>hist.svg : histogram of the relative percentage error: 100[σ(fi)/fi] 
 

Examples of these are shown below. Note: these are based on totally unrealistic data 
and portray no information on current performance of the WISE detectors. 
 

 
 

Figure 2: Example histograms based on simulated data (see §5.2). The strong ‘high’ tails 
are indicative of sources that were not properly filtered in the flat estimation process 

 
 

6 USAGE EXAMPLE 

The command-line example below executes compflat in a C-shell script using method 2 (the 
stacking method). All parameters have been optimized to a WISE band-1 simulation. Method 1 
(the gradient method) can be invoked on the same input data by setting “–method 1” and keeping 



 22 

the options suffixed with “_fcal” as they appear here. See the flatcal SDS (WSDC-D-D012 in 
§1.3) for details on method 1.  
 
#! /bin/tcsh –f 
 
set inpdir = /wise-ops/01/wise/fmasci/flatcal1 
 
compflat -imglist $inpdir/ImageList.txt \ 
 #              -unclist $inpdir/UncertList.txt \ 
               -msklist $inpdir/MaskList.txt \ 
               -filt \ 
               -m_fcal 4 \ 
# method 1 => flatcal; method 2 => plain stacking: \ 
               -method 2 \ 
               -n_fcal  flatcal.nl \ 
               -lt_fcal 3.5 \ 
               -ut_fcal 3.5 \ 
               -lf_fcal -9.9e25 \ 
               -hf_fcal  9.9e25 \ 
#               -r_fcal \ 
               -rm_fcal 0.0001 \ 
# next ten params are for method 2: \ 
               -nmed 255 \ 
               -lthres 3.0 \ 
               -uthres 3.0 \ 
               -fthres 5.0 \ 
               -normeth 2 \ 
               -fltnorm 3 \ 
# following param is for fltnorm = 3: \ 
               -order 2 \ 
# following three params are for fltnorm = 2: \ 
               -svbgrid 5 \ 
               -ksize 1.5 \ 
               -ksig 0.5 \ 
               -outdir $inpdir/outputs \ 
               -qadir $inpdir/qa \ 
               -archdir $inpdir/meta \ 
               -qa \ 
               -qameta meta-flat.tbl \ 
               -fltprd $inpdir/outputs/flat-w1-est.fits \ 
               -fltunc $inpdir/outputs/flat-w1-unc.fits \ 
               -fltmsk $inpdir/outputs/flat-w1-msk.fits \ 
               -o3_fcal flatintcpt-w1-est.fits \ 
               -o4_fcal flatintcpt-w1-unc.fits \ 
               -o5_fcal flat-w1-cov.fits \ 
               -o7_fcal flat-w1-chi.fits \ 
               -o8_fcal flat-w1-num.fits \ 
               -o9_fcal flat-w1-frmeds.tbl \ 
               -dbg \ 
               -v 
 
 



 23 

7 TESTING 

The compflat script has been tested on simulated data-frames provided by Ned Wright. These 
were further modified to simulate varying background levels and gradients. This data is not of 
sufficient quality to compare the accuracy achieved between the gradient and stacking methods. 
Better simulations are available at the time of writing and testing of both flat-fielding methods is 
currently underway. 
 
 

8 LIENS 

• Low priority: use a more memory-efficient stack-medianing algorithm, i.e., that uses all 
the input frames instead of a subset when determining robust metrics for outlier 
detection. 

 
 
Acknowledgments 
 
The author is indebted to the WISE Calibration and QA Scientists, and John Fowler for 
illuminating and philosophical discussions. The author also thanks Roc Cutri for guidance. 


