

Wide-field Infrared Survey Explorer

Subsystem Design Specification

A WISE Outlier Detector (AWOD)

Version 1.3, 28-July-2008

Prepared by: Frank Masci

Infrared Processing and Analysis Center
California Institute of Technology

WSDC D-D014

 2

Concurred By:

Roc Cutri, WISE Science Data Center Manager

Tim Conrow, WISE Science Data Center Lead Architect

Frank Masci, WISE Science Data Center Cognizant Engineer/Scientist

 3

Revision History

Date Version Author Description

April 6, 2008 1.0 Frank Masci Initial Draft
June 26, 2008 1.1 Frank Masci Fixed bug on not closing mask

FITS file using close_fits_file.
This lead to overflow of buffer
for number of FITS files open.

July 10, 2008 1.2 Frank Masci Computed more robust SNR
image to use in adaptive outlier
avoidance near real sources.

July 12, 2008 1.3 Frank Masci Replaced header reading
function with more robust
function: ffhdr2str. This
properly parses standard
distortion header keywords.

 4

Table of Contents

1. INTRODUCTION ...5

1.1 Purpose and Scope... 5

1.2 Document Organization .. 5

1.3 Applicable Documents... 5

1.4 Requirements... 6

1.5 Acronyms ... 7

2 OVERVIEW...8

3 INPUT/OUTPUT SPECIFICATION...8

4 CO-ADD SUBSYSTEM OVERVIEW ...11

5 BACKGROUND AND AWOD OVERVIEW...12

6 AWOD PROCESSING ...14

6.1 Assumptions and Advisories ... 14

6.2 AWOD Processing Phases ... 15

6.3 Command-line Usage Examples.. 21

7 EXAMPLES AND TESTING..22

8 LIENS ..22

 5

1. INTRODUCTION

1.1 Purpose and Scope

This Subsystem Design Specification (SDS) document describes the basic requirements,
assumptions, definitions, software-design details, algorithm and necessary interfaces for a
module of the WISE CO-ADD subsystem. It will be used to trace incremental development, and
contains sufficient detail to allow future modification or maintenance of the software by
developers other than the original developer. This document is an evolving document as changes
may occur in the course of science instrument hardware design and maturity of operational
procedures.

This document focuses on one component (module) of the CO-ADD subsystem - AWOD. Its
purpose is to read in multiple image-frame exposures within a pre-defined region on the sky, re-
project and interpolate them onto a common grid, and apply robust statistics to detect “out-of-
bed” pixels, i.e., inconsistent measurements at the same sky location across frames in the stack.
From hereon, these will be referred to as outliers. These outliers will be recorded in frame pixel
masks for use downstream (e.g., source photometry). Potential outliers include cosmic rays,
latents, other optical/instrumental artifacts, supernovae!, asteroids, and basically anything that
has moved or varied appreciably with respect to the inertial sky (e.g., the CMB) over the
observation span of all the input overlapping frames. This also includes inconsistencies due to
poor frame registration, e.g., pointing errors greater than the typical size of a native pixel.

AWOD is executed prior to frame co-addition with AWAIC, which is used to generate the WISE
Image Atlas. Specific design and implementation details of other modules in the CO-ADD
subsystem are described in separate SDS documents (see references in §1.3 below).

1.2 Document Organization

This document is organized along the major themes of Requirements; Other Software Interfaces;
Assumptions; Functional Descriptions and Dependencies; Input/Output; Algorithm Descriptions;
Testing; and Major Liens.

The material contained in this document represents the current understanding of the capabilities
of the major WISE systems and sub-systems. Areas that require further analysis are noted by
TBD (To Be Determined) or TBR (To Be Resolved). TBD indicates missing data that are not yet
available. TBR indicates preliminary data that are not firmly established and subject to change.

1.3 Applicable Documents

• WISE Project Plan (Level 1 Requirements)

• WISE Science Requirements Document (Level 1.5 Requirements)

 6

• WSDC Functional Requirements Document WSDC D-R001 (FRD – Level 4

Requirements):
http://web.ipac.caltech.edu/staff/roc/wise/docs/WSDC_Functional_Requirements_all.pdf

• WSDS Functional Design Document WSDC D-D001 (FDD)

• WSDC Software Management Plan WSDC D-M002 (SMP):

http://web.ipac.caltech.edu/staff/roc/wise/docs/wsdc-smp-draft.pdf

• WSDC Science Data Quality Assurance Plan WSDC D-M004 (QAP):
http://web.ipac.caltech.edu/staff/roc/wise/docs/QA_Plan_WSDC_2007-03-01.pdf

• Software Interface Specification (SIS) WSDC D-I101 – Frame Processing Mask:

http://web.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal01.txt

• Software Interface Specification (SIS) WSDC D-I102 – Frame WCS FITS Header
Keywords: http://web.ipac.caltech.edu/staff/fmasci/home/wise/SFPWrap01.txt

• Frame Co-addition Critical Design Review (01/30/2008):

http://web.ipac.caltech.edu/staff/fmasci/home/wise/Co-addition_CDRJan08.pdf

• Subsystem Design Specification (SDS) WSDC D-D005 – AWAIC: A WISE

Astronomical Image Co-adder: http://web.ipac.caltech.edu/staff/fmasci/home/wise/sds-
wsdc-D005-awaic.pdf

• Subsystem Design Specification (SDS) WSDC D-D??? – Bmatch: Background Matcher

(in preparation).

• Subsystem Design Specification (SDS) WSDC D-D??? – Frame Co-adder Wrapper

Script (in preparation).

1.4 Requirements

Below we summarize some requirements on the final release products that relate to the detection,
flagging and recording of outlying pixels prior to co-addition. These are from the WSDC
Functional Requirements Document (§1.3).

- L4WSDC-001: The WSDC shall produce a digital Image Atlas that combines multiple
survey exposures at each position on the sky.

- L4WSDC-021: The images in the final WISE Image Atlas shall be re-sampled to a
common pixel grid at all wavelengths.

- L4WSDC-026: The WSDC shall generate and archive coverage maps that show the
number of independent observations that go into each pixel of the Image Atlas images in

 7

each band. The coverage numbers shall take into account focal plan coverage and losses
due to poor data quality, low responsivity and/or high noise masked pixels, and pixels
lost because of cosmic rays and other transient events.

- L4WSDC-080: The final WISE Source Catalog shall have greater than 99.9% reliability
for sources detected in at least one band with SNR>20, where the noise includes flux
errors due to zodiacal foreground emission, instrumental effects, source photon statistics,
and neighboring sources. This requirement shall not apply to sources that are
superimposed on an identified artifact.

- L4WSDC-084: The WISE Image Atlas shall be constructed by combining all available
science images covering the sky. This does not include image pixels rejected because of
low responsivity, high dark current or read noise, transient behavior such as charged
particle impacts, or scattered light due to moon proximity.

1.5 Acronyms

AWAIC A WISE Astronomical Image Co-adder
AWOD A WISE Outlier Detector
CPU Central Processing Unit
CR Cosmic Ray
CVZ Continuous Viewing Zone
DN Data Number
FDD Functional Design Document
FRD Functional Requirements Document
FITS Flexible Image Transport System
FOV Field of View
FPA Focal Plane Array
FRESCO Full RESolution CO-add
FWHM Full Width at Half Maximum
HIRES High Resolution
HST Hubble Space Telescope
I/O Input / Output
IPAC Infrared Processing and Analysis Center
IRAC Infra-Red Array Camera
IRAS Infra-Red Astronomical Satellite
IRSA NASA/IPAC Infra-Red Science Archive
MAD Median Absolute Deviation
MCM Maximum Correlation Method
MFPREX Multi Frame Pointing REconstruction
MOPEX [SSC’s] MOsaicker and Point source Extractor
NEP North Ecliptic Pole
PA Position Angle
PRF Point Response Function
PSF Point Spread Function
SDS Subsystem Design Specification

 8

SEP South Ecliptic Pole
SFPREX Single Frame Pointing REconstruction
SIP Simple Imaging Polynomial
SIS Subsystem Interface Specification
SMP Software Management Plan
SNR Signal to Noise Ratio
SSC Spitzer Science Center
TBD To Be Determined
TBR To Be Resolved
2MASS Two Micron All Sky Survey
QA Quality Assurance
QAP Quality Assurance Plan
WCS World Coordinate System
WISE Wide-field Infrared Survey Explorer
WSDC WISE Science Data Center
WSDS WISE Science Data System
WST WISE Science Team

2 OVERVIEW

WISE shall produce image data frames consisting of 1024 × 1024 pixels for bands 1, 2 and 3
with a projected size of 2.75 arcsec/pixel, and 512 × 512 pixels for band 4 with a size of 5.5
arcsec/pixel. This corresponds to image dimensions of ≈ 47 × 47 arcmin on the sky for all bands.
Prior to co-adding and mosaicing, the image frames are first processed to remove instrumental
signatures, their WCS refined using an astrometric catalog, and then a photometric zero-point is
inserted into their headers to represent the photometric calibration. They are then ready for the
multi-frame pipeline (described in the FDD). This consists of several modules, one of which is
the outlier detection and flagging module: AWOD. This document describes the algorithm,
philosophy and usage behind AWOD.

Inputs to AWOD are a list of FITS frame file names, a list of corresponding bad-pixel FITS
image masks, and processing parameters. Interpolation onto the common grid is performed using
a top-hat PRF kernel. This accentuates and localizes the outliers for optimal detection (for
instance, single-spike cosmic rays). The primary outputs from AWOD are updated bit-masks
containing specific values at the pixel locations of detected outliers, and optionally, an 8-bit
mosaic (or map) in FITS format showing the locations of all outliers. Additional products can be
generated in debug mode such as the median, robust-sigma, depth-of-coverage, and SNR mosaic.
AWOD is written in ANSI/ISO C.

3 INPUT/OUTPUT SPECIFICATION

 9

AWOD takes all of its input from the command-line, which is set up by a startup script and
controlled by the WSDS pipeline executive, or, it can be set up manually and executed
standalone. Prior to parsing the command-line inputs, default values for the optional input
parameters are assigned. Table 1 summarizes all command-line inputs, their purpose and default
assignments. An example command-line usage is given in §6.3.

Information on details of processing can be written to standard output by specifying the –v
switch, and debug information that includes ancillary FITS file products can be generated by
specifying the –g switch. A processing log with all I/O is written at the end. Quality assurance
diagnostics and metrics will be generated by a separate module in the CO-ADD subsystem.
These metrics are described in the WSDC Science Data Quality Assurance Plan (§1.3).

Variable name option Description Data-type /

Format
Units Default

inp_image_list_fname -f1 List of image frames in
32-bit floating point
FITS format.

Char*256
(text file)

Null Required input.

inp_mask_list_fname -f2 List of bad-pixel masks
to update in 32-bit
integer FITS format.
Only values 0→231 used

Char*256
(text file)

Null Required input.

mosaic_size_x -X E-W mosaic dimension
for crota2=0.

R*4 float degrees Required input.

mosaic_size_y -Y N-S mosaic dimension
for crota2=0.

R*4 float degrees Required input.

RA_center -R RA of mosaic center. R*4 float degrees
0…360

Required input.

Dec_center -D Dec. of mosaic center. R*4 float degrees
-90…+90

Required input.

mosaic_rotation -C Mosaic rotation in terms
of crota2: +Y axis W of
N.

R*4 float degrees
0…360

Required input.

grid_pixelscale -pa Pixel scale of
interpolation grid: same
in X and Y. Must be ≤
input frame pixel scale.

R*4 float arcsec Required input.

num_tiles_along_x -nx Number of partitioning
tiles along X dimension
of interp. grid.

I*2 int Null 1 (=> whole grid)

num_tiles_along_y -ny Number of partitioning
tiles along Y dimension
of interp. grid.

I*2 int Null 1 (=> whole grid)

lower_tail_thres -tl Lower-tail threshold in
number of sigma for
outlier detection.

R*4 float sigma 4.0

upper_tail_thres -tu Upper-tail threshold in
number of sigma for
outlier detection.

R*4 float sigma 4.0

 10

min_snr_to_rescale -ts Minimum (median -
bckgnd)/sigma value
for stack above which to
rescale -tl and -tu
thresholds by -r factor.

R*4 float Null 1.0E+30

max_outin_area_thres -ta Maximum out/in pixel
area ratio below which
to use nearest-neighbor
and max-overlap area
weighted interpolation
(improves speed).

R*4 float Null 0.25

thres_rescale_factor -r Scaling factor for
upper/lower-tail
thresholds in stacks
satisfying SNR > -ts
<input>.

R*4 float Null 1.0

sigmad_scale_factor -s Scaling factor for
sigma_MAD estimates
(for consistency with
expected Gaussian
sigma).

R*4 float Null 1.0

smooth_sigmad_flag -b Smooth sigma_MAD
images using median
filter? 0=>no; 1=>yes

I*2 int Null 0

med_filter_window -w Square window side
length in pixels for
median filter; must be
odd integer.

I*2 int grid
pixels

3

out_mask_bits -m Mask template bit to set
in input masks if outlier
is detected.

I*4 unsigned
int

Null 0 (=> no updating)

out_mask_mosaic -om Output FITS filename
of 8-bit mosaic image
showing outlier
locations (with value 1
otherwise 0).

Char*256
(text file)

Null No outlier map
generated.

Debug Flag -g switch to print debug
statements to stdout and
generate debug FITS
file products to
execution directory.

Null Null 0

Verbose Flag -v switch to print details of
processing to stdout.

Null Null 0

Table 1: Command-line inputs and options

When AWOD is executed with no command-line inputs, or, with a single “-help” (e.g., simply
as “awod –help”), a command-line synopsis and tutorial is printed on the screen. This is
reproduced below:

Program aWod: A WISE Outlier Detector, Version 1.3

 11

Usage: awod
 -f1 <inp_image_list_fname> (Required; list of images in FITS format)
 -f2 <inp_mask_list_fname> (Required; list of bad-pixel masks to update in
 32-bit INT FITS format; values 0 -> 2^31 used)
 -X <mosaic_size_x> (Required [deg]; E-W mosaic dimension
 for crota2=0)
 -Y <mosaic_size_y> (Required [deg]; N-S mosaic dimension
 for crota2=0)
 -R <RA_center> (Required [deg]; RA of mosaic center)
 -D <Dec_center> (Required [deg]; Dec. of mosaic center)
 -C <mosaic_rotation> (Required [deg]; in terms of crota2:
 +Y axis W of N)
 -pa <grid_pixscale> (Required [asec]; output interp-grid pixel scale
 [<= input img scale])
 -nx <num_tiles_along_x> (Optional [integer]; number of tiles along X
 dimension of mosaic; Default=1 [whole mosaic])
 -ny <num_tiles_along_y> (Optional [integer]; number of tiles along Y
 dimension of mosaic; Default=1 [whole mosaic])
 -tl <lower_tail_thres> (Optional; lower-tail threshold in number of
 sigma for outlier detection; Default=4)
 -tu <upper_tail_thres> (Optional; upper-tail threshold in number of
 sigma for outlier detection; Default=4)
 -ts <min_snr_to_rescale> (Optional; minimum "(median-bckgnd)/sigma" value
 for stack above which to rescale <-tl> and <-tu>
 thresholds by <-r> factor; Default=1E+30)
 -ta <max_outin_area_thres> (Optional; maximum out/in pixel area ratio below
 which to use nearest-neighbor and max-overlap
 area weighted interpolation; Default=0.25)
 -r <thres_rescale_factor> (Optional; scaling factor for upper/lower-tail
 thresholds in stacks satisfying <-ts>; Default=1)
 -s <sigmad_scale_factor> (Optional; scaling factor for sigma_MAD estimates;
 Default=1.0)
 -b <smooth_sigmad_flag> (Optional; smooth sigma_MAD images using median
 filter? 0=>no; 1=>yes; Default=0)
 -w <median_filter_window> (Optional; square window side length in pixels
 for median filter; must be odd integer; Default=3)
 -m <out_mask_bits> (Optional [decimal]; mask template bit to set
 for temporal outlier in input masks;
 Default=0 => no updating)
 -om <out_mask_mosaic> (Optional; output FITS filename of 8-bit mosaic
 showing temporal outlier locations)
 -g (Optional; switch to print debug statements
 to stdout and files [including FITS files])
 -v (Optional; switch to print more verbose output)

4 CO-ADD SUBSYSTEM OVERVIEW

Figure 1 shows the proposed major processing steps in the CO-ADD subsystem. AWOD
processing is shown within the red dotted box and is expanded in Figure 3. All other modules
and functions are described in separate SDS documents (see references in §1.3).

 12

Figure 1: CO-ADD subsystem processing flow

5 BACKGROUND AND AWOD OVERVIEW

We will take advantage of the redundancy from multiple frame exposures and attempt to identify
input pixels which when aligned in sky-coordinates (in a stack), have measurements that are
inconsistent. These inconsistent measurements are also referred to as temporal outliers since they
are detected amongst frames acquired at different times.

In general, the method involves first projecting and interpolating each input frame onto a
common grid. Depending on the size of the input pixel relative to the characteristic size of the
instrumental PSF, this grid may or may not have a finer pixel scale. A brute force approach is
then taken whereby each pixel stack (in interpolated space) is taken in turn, and searched for
outliers using robust statistics (see below).

We stress that it helps to have good sampling of the instrumental PSF for temporal outlier
detection, i.e., at the Nyquist rate or better. Figure 2 shows a one-dimensional schematic for
well-sampled and under-sampled cases. When well sampled (pixels shaded green), more detector
pixels in a stack can be made to align within the span of the PSF. I.e., the profile of a star can be
tracked through the stack and any pixel variations from frame-to-frame will be mostly due to
variations in the PSF. Outlier detection performed within the interpolated pixel stack labeled j
for example is likely to be reliable. However if the PSF were grossly under-sampled, a star will
only be detected by the red pixels in Figure 2. The pixel marked “” contains the star, and this
is in danger of being declared an outlier within the stack labeled j. WISE will be better than

 13

critically sampled across all bands, and this improves the reliability of detecting outliers via
stacking methods considerably.

When each frame has been projected and interpolated onto a common pixel grid, outliers can be
searched for within a pixel stack j using robust non-parametric estimators for the first and second
moments of the sample distribution. These estimators are relatively insensitive to the outliers
themselves. We adopt the median, and the Median Absolute Deviation (MAD) from the median
as a proxy for sigma (or dispersion):

!

" j #1.4826 median pi $median pi{ }{ }, (Eq. 1)

where pi is the value of the ith interpolated pixel within stack j. The factor of 1.4826 is the
correction necessary to make this consistent with the standard deviation of a Normal distribution
in the large sample limit. A pixel is then declared an outlier if for given “upper” (uthres) and
“lower” (lthres) tail thresholds, its value pi satisfies:

!

pi > median pi{ } + uthres" j

or

pi < median pi{ }# lthres" j (Eq. 2)

The upper and lower tail thresholds are respectively specified by the –tu and –tl command-line
inputs.

 14

Figure 2: Schematic of the temporal method for sampled and under-sampled cases

6 AWOD PROCESSING

6.1 Assumptions and Advisories

Below we list the assumptions pertaining to the format, size and content of the image inputs.
Many of these are checked internally by the program. If not satisfied, the program aborts with a
message and a non-zero exit status written to standard error.

• The input lists of intensity and mask images must all have the same number of filenames
listed in one-to-one correspondence.

• All image inputs are in FITS format.
• All input intensity images are expected to have the same native pixel scale (but ΔX ≠ ΔY

is allowed); the same projection type (CTYPE header keywords); the same NAXIS1,
NAXIS2 values (with NAXIS1 ≠ NAXIS2 allowed); and the same EQUINOX.

• If optical-distortion information is available, this must be represented in the FITS headers
of the intensity images using the Simple Imaging Polynomial (SIP) convention with the
WCS keywords CDELT1, CDELT2, CROTA2 encoded in CD matrix format. For an
example and more information, see SIS document WSDC D-I102 referenced in §1.3.

• It is recommended that all image pixel scales (either from CDELT or CD keywords) be
represented in the FITS headers to at least 8 significant figures.

• The only projection types recognized by the software are: TAN, SIN, ZEA, STG and
ARC. These are specific to the fast plane-to-plane projection algorithm used.

• The maximum linear mosaic dimension supported by the image projection libraries in
AWAIC is 16°. However, one is likely to run out of memory first (depending on the
output pixel scales chosen) before the necessary arrays are allocated. The reason for this
maximum is that for sizes greater than this, the SIN and TAN projections (the most
common types) will give pixel scale distortions of >1% and >2% respectively at the
extremities relative to the mosaic center. The baseline specification for WISE is to have
Atlas Image grid sizes no larger than ≈ 1 square degree, so this won’t be a problem. A
maximum linear size of MAXMOSAICDIM = 16° is hard-coded in the awaic.h include file.

• The output grid pixel scale “–pa <in arcsec>” must satisfy: minscale ≤ pa ≤ maxscale,
where minscale = sqrt[MINAREAR*inp_image_CDELT1*inp_image_CDELT2];
maxscale = sqrt[inp_image_CDELT1*inp_image_CDELT2], and MINAREAR = 0.1 is
currently hard-coded in the awaic.h include file. The inp_image_CDELTs are pixel scales
in the input intensity images. Therefore, the grid pixel scale is constrained by the ratio of
output/input pixel area.

• The input mask FITS images, if specified, are expected to have a BITPIX=32 (i.e., 32-bit
signed integer format). However, only the first 31 bits (excluding the sign bit) are used in
processing. Masks with BITPIX=16 or 8 or even -32 (floating point) can still be stored.
Only the integer part of the float will be stored for BITPIX=-32.

 15

• The output fatal bit-string template specification: –m <out_mask_bits> allows one to
flag pixels affected by outliers. The bit definitions for WISE are outlined in the SIS
document WSDC D-I101 referenced in §1.3. Note that “–m 0” implies no mask updating.
This setting could first be run in test mode (i.e., to get an outlier count and mosaic mask)
since once the masks are updated, they cannot be easily restored. We always encourage
making a backup copy of the input masks prior to updating them with AWOD.

• The minimum number of pixels in a stack (with valid data) to perform outlier flagging is
hard-coded in the awaic.h include file as NSAMPMIN = 5. In other words, depth-of-
coverages below this will not be searched for outliers. This limit is particular to the
method used for computing robust measures of the spread (σMAD). One can set NSAMPMIN
= 4 as the absolute minimum, but we don’t recommend it. For small samples, the outlier
detection process becomes severely unreliable.

• The dominant memory usage in AWOD is a 3-D array for storing the stack of input
image frames. Each image plane therein corresponds to the dimensions of a “common”
interpolated tile grid. The minimum required system memory (in Gigabytes) can be
computed from the following relation:

!

Mem "1.678
(Lx /1.564deg)(Ly /1.564 deg)

(s /2.75 arcsec)2

1

NxNy

N frames

100

$
%

&

'
(GB, (Eq. 3)

where Lx and Ly are the dimensions of the master grid (command-line inputs –X and –Y),
s is its desired pixel scale (input –pa), Nx and Ny are the number of tile partitions along
the x and y axes of the master grid (inputs –nx and –ny), and Nframes is the number of input
frames assumed to overlap with the master grid. If some of your input frames don’t
overlap with the master grid, memory is still allocated and hence wasted. Equation 3 has
been scaled to 100 input frames, an output grid pixel size of 2.75 arcsec (optimal for
WISE processing), and dimensions typical of a WISE Atlas Image (1.564 × 1.564 deg2).

6.2 AWOD Processing Phases

A brief description of the methodology was outlined in §5. Here we outline the details of
processing within AWOD. A processing flow is given in Figure 3, where each step is expanded
upon below.

After reading all input parameters and filenames from the command-line, the first step is to
check that they are within range and are valid according to the assumptions in §6.1. Defaults are
then assigned to the optional unspecified parameters. The program then sets up the WCS of the
master interpolation grid based on the input parameters -X, -Y, -R, -D, -C, -pa and other generic
WCS keywords from the first listed input image frame.

 16

Figure 3: Processing flow in AWOD. Red boxes represent the main computational steps

The master grid can be partitioned into Nx × Ny tiles (via the –nx and –ny command-line inputs).
This is to assist with memory management when storing 3-D cubes of interpolated image frames,

• read parameters, frame/mask lists;
• initialize default parameters;
• check parameter ranges, validity;
• store input frame/mask filenames
• store input frame WCS params;

Define WCS structure of master
interpolation grid according to inputs

Define WCS positions of tiles in master
grid frame if tile partitioning is
requested, i.e., if Nx × Ny > 1, otherwise
master grid defines a single tile.

For each of the Nx × Ny tiles:

First pass on all input frame pixels:
1. project to tile grid;
2. interpolate pixels in tile grid using
overlap-area weighting;
3. store interpolated image planes that
overlap with tile in a 3-D array stack;
4. compute medians of each interpolated
pixel stack and robust sigma: σMAD
(store these in memory).

1

Second pass on all input frame pixels:
1. re-project and re-interpolate pixels
onto tile grid;
2. during process, compare interpolated
values against median ± σMAD and input
thresholds according to Eq. 7;
3. if outlier declared, set bit in
accompanying frame mask and global
mosaic-mask array;
4. enumerate outliers;

2

- report outliers to stdout and/or log file
- update frame mask FITS headers with
HISTORY if pixels were masked.

OUTPUTS:
• 32-bit frame masks updated in-situ

(if outliers detected) with specific
value 2b where b = desired bit;

• optional [-om input]: 8-bit mosaic-
mask storing 0 or 1 (=> outlier
detected in at least one input frame
overlapping at that location);

• processing log and messages
written to stdout: contains outlier
enumerations and timing
information;

• optional [-g]: 4 debug/diagnostic
FITS files per tile: depth-of-
coverage; medan co-add; σMAD
image; median SNR image.

INPUTS:
• list of intensity image frames;
• list of accompanying masks;
• master grid WCS parameters;
• number of tiles along x and y;
• outlier detection parameters;
• output mosaic-mask filename

(optional);

 17

e.g., see Eq. 3. If tiling is desired, then each tile is assigned its own WCS with unique R.A., Dec
and reference pixel coordinates and rotation (CROTA2) equal to that of the master grid. Each tile
will define a “common” interpolation grid for all input frames that overlap with it. If there is
ample system memory and partitioning is not desired (i.e., Nx × Ny = 1), then the “common” tile
grid is the master grid itself.

For each tile, or master grid for no tiling, there are two passes through all the frame pixels [see
two red boxes embedded in Figure 3]. The goal of the first pass is to compute robust (≈ outlier
resistant) measures of location and spread in all interpolated pixel stacks (e.g., the median and
σMAD). These products will be used in the second processing pass to actually detect and flag
outliers. We outline the specifics of each step.

First Pass Computations

The first pass projects frame pixels using the fast pixel-to-pixel WCS transformation library
(libtwoplane) onto the interpolation grid. This transformation also corrects for FOV distortion
using the SIP FITS representation. The interpolation uses the overlap-area weighting method to
compute the flux in the output grid pixels. In essence, this method involves projecting the four
corners of an input pixel directly onto the output grid (with rotation included). Input/output pixel
overlap areas are then computed using a textbook algorithm for the area of a polygon, and then
used as weights when summing the contribution from the pixels of an input frame with signals
Di. The signal in grid pixel j from frame k is given by:

!

f jk =

aikjDik

i

"

aikj
i

"
, (Eq. 4)

where aikj is the overlap area between pixel i from input frame k with output grid pixel j (see
right schematic in Figure 4).

The projection and interpolation is only performed for those frames that overlap with the tile grid
of interest. This overlap pre-filtering is performed using a coarse method whereby an overlap is
declared if the separation between the centers of a tile and input frame is less than the sum of the
radii of circles that circumscribe the tile and frame. The interpolated planes for each overlapping
frame are stored in a 3-D cube, whose memory allocation is described by Eq. 3.

The median is then computed for each interpolated pixel stack j by first sorting the pixel samples
using the heapsort algorithm. This uses the gsl_sort_float() routine from the GNU Scientific
Library. The median is computed as the 50th percentile of the sorted stack, and we account for
even numbered samples. We also compute a robust measure of the dispersion. For speed and
efficiency, we use an approximation to the actual σMAD as defined by Eq. 1 and call it the pseudo-
MAD. This approximation works directly off a sorted array by selecting the appropriate indices.

 18

We define the pseudo-MAD as follows, where k = 0, 1, 2, 3,…N is the sample number in a
sorted pixel stack, stack[k], at location j in the interpolation grid.

!

"MADj #1.482602 $
1

4
$ stack

3N

4

%

& '
(

) *
+ stack

3N

4
+1

%

& '
(

) *
,

-
.

/

0
1 + stack

N

4

%

& '
(

) *
+ stack

N

4
+1

%

& '
(

) *
,

-
.

/

0
1

2
3
4

5
6
7
, (Eq. 5)

where the factor of 1.482… is the correction to ensure Normality in the large sample limit. The
array indices are rounded down to the nearest integer. The depth-of-coverage N (number of
samples in a stack) must satisfy N ≥ NSAMPMIN, where NSAMPMIN is currently hard-corded
as 5 in the awod.h include file. Simulations have shown that Eq. 5 becomes “very noisy” when
the sample size is less than 5. This adversely affects the ability to perform robust outlier
detection. If N < NSAMPMIN in processing, the σMADj value is set to NOMADVAL, where
currently NOMADVAL = -10000.0 in awod.h. This is used as a flag to detect and avoid such
values in downstream processing.

There is an option to smooth the σMADj image values using spatial median filtering. This is only
performed if “-b 1” is specified on the command-line. The default is to perform no median
filtering. If requested, the window side-length of the median filter (in odd number of grid pixels)
can be specified via the –w command-line parameter. The reason for smoothing the σMADj image
is to avoid using erroneous (usually underestimated) values of σMADj when the depth-of-coverage
is low, i.e., N <~ 10. As mentioned above, σMADj itself is not an efficient estimator of scale for
small samples. Smoothing replaces each value with a median of the neighborhood, and this is
expected to be more-or-less representative of the “true dispersions” in stacks at each location. If
for example, the σMADj values happen to be underestimated in some regions (due to their noisy
nature), this will bias flux thresholds (medj ± tσMADj) towards low values and hence
inadvertently flag “good samples” as outliers. There is also an option to scale the post-filtered
σMADj values with a factor specified by the command-line parameter input: –s <factor> [default =
1]. This allows the user to scale the σMADj values for each stack for consistency with the expected
RMS fluctuations in an image (Gaussian or otherwise). This enables one to set thresholds
according to a prior measured image RMS, rather than the pseudo-MAD in pixel stacks that may
be subject to under-sampling and other systematics.

AWOD includes an adaptive thresholding method in that if it encounters a pixel that’s likely to
be associated with a “real” signal (e.g., a source), then the upper threshold is automatically
inflated by a specified amount to avoid (or reduce the incidence of) flagging such sources as
outliers. To distinguish between what’s real or not, we compute a “median SNR” image
corresponding to the interpolated pixels j. This is computed using:

 19

!

SNR j "
median j # bckgnd

RMS j

, (Eq. 6)

where :

bckgnd = median median j ; for all j $ median N j{ }();

RMS j " RMS median j ; for all j $ median N j{ }() %
median N j

N j

,

and the base RMS :

RMS median j ; for all j $ median N j{ }() " bckgnd #16thptile.

The first term in the numerator is the median signal for pixel stack j, and the second term is a
global background measure. This background is computed as the median signal over all stack
medians such that their depth-of-coverage Nj is equal to the median depth over the entire tile
grid. The denominator is an estimate of the spatial RMS fluctuation for pixel stacks at the
median depth-of-coverage, relative to their median signal (the base RMS), and then appropriately
rescaled to represent the pseudo-local RMS at any depth Nj (third line in Eq. 6). More precisely,
the base RMS is computed using the lower tail values of the pixel distribution to avoid being
biased by sources and other “spatial outliers”. The 16th percentile (or more exactly, the quantile
corresponding to a lower-tail probability of 0.1586) is used, analogous to the standard deviation
of a Normal distribution, which can also be derived from quantiles: σ = µ – q0.1586 = 0.5*(q0.8413 –
q0.1586).

Note that Eq. 6 represents a good approximation for the local SNR, assuming the background
does not vary wildly. There is a lien to do this more robustly in future, i.e., compute a local
median filtered image (the local smoothly varying background) within some tunable window, as
well as a corresponding RMS, and then use these to compute the SNR for all grid pixels. The
SNR image is used during the outlier flagging process (in the 2nd pass) to determine if the pixel
contains a legitimate signal (e.g., a real source).

At the end of first pass computations, we have three image products stored in memory for a tile
grid: median, pseudo-MAD (σMAD), and a SNR image. These are needed for the second pass. If
the debug switch (–g) is set, these three images and the depth-of-coverage map are saved to disk
as FITS images in the execution directory. These serve as valuable diagnostics.

Second Pass Computations

Given the robust metrics from the first pass, we now re-project (with distortion correction) and
re-interpolate all the input frame pixels onto the tile grid again, just like in the first pass. The
only difference here is that as each pixel from the kth input frame is projected, it is compared to
the existing median, σMAD and SNR values at the same pixel location j in the tile grid to

 20

determine if it is an outlier. In general, an interpolated pixel from frame k, fjk (Eq. 4) is declared
an outlier with respect to other pixels in stack j if its value satisfies:

!

f jk > median j + uthres"MADj and SNR j # SNRmin (Eq. 7)

or

f jk > median j + r * uthres"MADj and SNR j > SNRmin

or

f jk < median j $ lthres"MADj regardless of SNR j ,

where the parameters uthres, lthres, r and SNRmin correspond to the command-line inputs: –tu, –tl, –
r, and –ts respectively. This is a refinement to Eq. 2. The difference here is that the upper-tail
threshold, uthres is inflated by the factor r if the median SNR in pixel j is greater than some preset
threshold (e.g., some pixel SNR of interest: 3, 5 or 10 etc… in σ units). The median is not
expected to be biased by outliers (as long as they don’t contaminate ≥50% of the sample), so if
the median is relatively large, it’s quite probable that the pixel contains signal from a real source.
The factor r can be set to some arbitrarily large value to avoid any flagging whatsoever for pixels
with median SNR above SNRmin.

If an input pixel from frame k leads to an outlier in the interpolated space of some tile, then a bit-
value is set in it’s accompanying mask image. The mask value to set is specified by the
command-line input: –m <2b value>, where b is the required bit. Specifying “–m 0” (also the
default) means no mask updating. In addition to updating the input mask, a value “1” is set in an
output mask array, at the appropriate location, with the same dimensions as the master grid. This
is only performed if the –om <outfname> was provided on input. This mask array is then written
to an image in FITS format with name outfname. This image has also been referred to as an
outlier map in this document.

One detail specific to the second pass regards the estimate of the interpolated pixel flux fjk. This
can be either done “exactly” using the area-overlap method (e.g., Eq. 4), or approximately using
nearest-neighbor interpolation. This approximate method was implemented for speed, and its
accuracy depends on the actual ratio of output-to-input pixel area, aj / ai. The value at which the
nearest-neighbor method kicks in can be controlled via the command-line parameter: –ta <max
out/in>. This threshold represents the maximum ratio of output-to-input pixel area below which
the nearest neighbor method is used. Above this threshold, the exact polygonal area-overlap
method is used (Eq. 4). The default value for –ta is 0.25, i.e., if an output pixel occupies a quarter
of an input pixel or less (by area, i.e., if aj / ai ≤ 0.25), then it’s more probable that the input pixel
overlaps an output pixel entirely (see left schematic in Figure 4). In this case, the output pixel
that’s nearest to the projected location of the input pixel is taken to “represent” the input pixel in
interpolated space, and its signal is fj ≈ (aj / ai)Di.

If however aj / ai > 0.25, it is less likely that an input pixel will entirely overlap an output pixel
(see right schematic in Figure 4). In this case, all four corners of the input pixel need to be

 21

projected to compute the exact overlap area enclosed by a polygon. This is a more time-
consuming procedure, but it uses less system memory (i.e., there are fewer output pixels to
store). If the ratio of output-to-input pixel area is >~ 0.25, then the exact overlap-area method is
strongly recommended to ensure the best interpolation accuracy and proper representation of
input pixels. Unless execution time is critical, we advise keeping “–ta 0.25” (the default). If the
nearest neighbor method is used when the actual output/input pixel areas are > 0.25, the variance
in pixel stacks will be artificially inflated. To compensate, this means we will need to inflate the
thresholds for outlier detection in Eq. 7, otherwise many spurious outliers may be detected. It
amounts to a tedious tuning problem.

Figure 4: Left: schematic where aout/ain <~ 0.25 and overlap area aij ≈ aout. Here the nearest

neighbor output pixel j to input pixel i is a good approximation. Right: schematic where
aout/ain = 1 and the overlap area aij (shaded polygon) needs to be formally computed.

At the end of second pass processing, outlier pixels are enumerated per frame and reported to the
standard output log. It’s important to note that these enumerations may contain duplicates if
partitioning of the master grid into tiles was specified (i.e., with –nx > 1 and/or –ny > 1). This is
because each tile is padded with additional pixels to avoid incomplete representation of input
pixels near tile boundaries after projection. Duplicates in the reported outlier enumerations will
never occur if one executes in single-tile mode (i.e., –nx 1 and –ny 1), where the tile becomes the
master grid itself. This assumes one has the system memory to do so, otherwise, the total number
of outliers detected per frame can be inferred by counting the number of pixels in the mask
images that have the relevant outlier-bit set.

6.3 Command-line Usage Example

Here is an example of a typical command-line that performs basic outlier detection and reports
affected frame pixels in both the input frame masks and an output “global” mosaic-mask (outlier

 22

map). For your interest, this run was used on WISE band-1 frames from Ned Wright’s May 2008
simulation (see second bullet point in §7). An explanation of all inputs was given in Table 1 of
§3.

% awod –f1 ImageList.txt –f2 MaskList.txt –X 1.56444 –Y 1.56444
–R 346.8 –D 27.6 –C 206.7 –pa 2.7499 –nx 1 –ny 1 –tl 10 –tu 10 –
ts 5.0 –ta 0.25 –r 300 –s 1.5 –b 1 –w 3 –m 134217728 –om
/wise/fmasci/mosaic-w1-msk.fits –v

To generate debug information and output diagnostic FITS files (e.g., median, σMAD, depth-of-
coverage, and SNR images), append a “–g” to the above command-line.

7 EXAMPLES AND TESTING

Testing was performed primarily on simulated WISE data and Spitzer data (IRAC and MIPS).
Analysis reports on AWOD (as well as subsequent co-addition with AWAIC) can be found on
the following web pages:

• AWOD: A WISE Outlier Detector: summarizes the software with examples of testing on
Ned Wright’s Dec 2007 simulation. Also summarizes the results of a simple
completeness and reliability analysis on data simulated by the author.
http://web.ipac.caltech.edu/staff/fmasci/home/wise/awod.html

• Mosaics from a WSDS-Processed Simulation (vsn 1.0): illustrates capabilities of AWOD

when integrated with AWAIC. Contains image co-adds and outlier maps generated from
simulated frames pre-processed with version 1.0 of the WSDS. The raw frames are from
Ned Wright’s May 2008 simulation.
http://web.ipac.caltech.edu/staff/fmasci/home/wise/MidLatSimMosaics2.html

• South Ecliptic Pole (SEP) Mosaics: reports testing on real data from the IRAC and MIPS

detectors on Spitzer. AWOD was integrated with background matching and AWAIC to
create mosaics of the SEP in five Spitzer bands: IRAC 1, 2, 3, 4 and MIPS 1.
http://web.ipac.caltech.edu/staff/fmasci/home/wise/sep_mosaics.html

8 LIENS

Here is a summary of the current liens. All are classified as minor. These will be implemented if
further testing reveals they significantly impact performance.

• More robust local background and RMS computation for use in SNR estimation
(discussion in §6.2).

 23

• Inflation of thresholds to ensure reliability when depth-of-coverage is below some
minimum since outlier detection metrics become unreliable (discussion in §6.2).

• Exclude prior masked pixels (known bad pixels) from temporal outlier flagging. This will

avoid duplicate (or multiple) flagging according to different conditions in input masks.

• Make memory allocation for 3D cube more efficient. E.g., only allocate memory for
frames that actually overlap with a tile grid, instead of using blind frame count from input
list. Currently, assumption is that input list only contains frames that overlap with the
master grid (co-add footprint).

• More thorough completeness and reliability analysis using appropriate simulation where

true outlier count is known, e.g., only cosmic rays, and no ambiguity from latents or
moving objects.

