
 1

Wide-field Infrared Survey Explorer

(WISE)

Tempcal Subsystem Design Document

Version 1.62

 6 August 2009

Prepared by: John W. Fowler & Frank. J. Masci

Infrared Processing and Analysis Center
California Institute of Technology

WSDC D-D011

 2

Concurred By:

Roc Cutri, WISE Science Data Center Manager

Tim Conrow, WISE Science Data Center System Architect

John Fowler, WISE Science Data Center Tempcal Cognizant Programmer

Frank Masci, WISE Science Data Center Tempcal Cognizant Engineer

 3

Revision History

Date Version Author Description
28 July 2008 1.0 J. W. Fowler &

F. J. Masci
Initial Draft

8 July 2009 1.1-1.25 J. W. Fowler &
F. J. Masci

Added debug aids, bug fixes, more robust
pixel offset estimation, SubOff option

11 September
2008

1.26 J. W. Fowler &
F. J. Masci

Installed standard WSDC error message
handling

10 October 2008 1.27 J. W. Fowler &
F. J. Masci

Added option to skip sky-offset
processing

16 July 2009 1.3-1.61 J. W. Fowler &
F. J. Masci

Added separate thresholds for frame
outliers, FITS images of frame limits of
transient runs, QA and debug statistics
files, frame partitioning for transient
analysis, latent tagging

6 August 2009 1.62 J. W. Fowler &
F. J. Masci

Switched from FITS header keyword
UTCS_OBS to UNIXT for time order.

 4

Table of Contents

1 Introduction

1.1 Subsystem Overview
1.1.1 Requirements
1.1.2 Liens

1.2 Applicable Documents
1.3 Acronyms

2 Input

2.1 Control Input
2.1.1 Command-Line Parameters
2.1.2 Namelist Parameters

2.2 ASCII Input
2.3 FITS Input

3 Processing
3.1 Initialization
3.2 Sky-Offset Computation

3.2.1 Frame Offset Computation
3.2.2 Pixel Offset Computation

3.3 Transient Pixel Identification and Latent Image Tagging
3.3.1 Partition Setup and Outlier Limits
3.3.2 Mmin Setup
3.3.3 Transient Identification and Decay Tagging

4 Output

4.1 Sky-Offset FITS Output
4.2 Sky-Offset Uncertainty FITS Output
4.3 Mask Updates
4.4 Optional Chi-Square FITS Output
4.5 Optional Sample-Size FITS Output
4.6 Optional Time-Slice FITS Output
4.7 QA Output
4.8 Debug Output

5 Testing and Parameter Tuning

5.1 Testing
5.2 Parameter Tuning

6 Example Command Lines

 5

1 Introduction

1.1 Subsystem Overview

This document presents the requirements, design, algorithms, and state of implementation of the
Tempcal (Temporary Effects Calibration) subsystem of the WSDC data processing system.
Tempcal runs offline on all or part of a single scan.

1.1.1 Requirements

Tempcal is required to compute a pixel ‘sky-offset’ image and to identify and flag persistent new
“bad” pixels in a stack of N consecutive frames along a scan. This is the essence of dynamic
pixel masking; tempcal updates FITS mask images by turning on bits in the pixel data to indicate
conditions that it diagnoses. The Level 4 requirements supported by this processing are as
follows.

L4WSDC-012: Flux measurements in the WISE Source Catalog shall have a SNR
of five or more for point sources with fluxes of 0.12, 0.16, 0.65 and 2.6 mJy at
3.3, 4.7, 12 and 23 micrometers, respectively, assuming 8 independent exposures
and where the noise flux errors due to zodiacal foreground emission, instrumental
effects, source photon statistics, and neighboring sources (traceable to Level-1).

L4WSDC-013: The root mean square error in relative photometric accuracy in the
WISE Source Catalog shall be better than 7% in each band for unsaturated point
sources with SNR>100, where the noise flux errors due to zodiacal foreground
emission, instrumental effects, source photon statistics, and neighboring sources.
This requirement shall not apply to sources that superimposed on an identified
artifact (traceable to Level-1).

L4WSDC-024: The WSDC shall generate and maintain an archive of the
calibrated, single epoch WISE images for the duration of the project for use by
the Project Team. The purposes of this archive are quality assurance, transient
analysis and moving object identification. Self-derived Demonstration Define
duration of project.

L4WSDC-037: The WSDC Pipelines subsystem shall convert raw WISE science
and engineering data into calibrated images and extracted source lists from which
the preliminary and final WISE data products will be derived.

 6

L4WSDC-039: Within 3 days from receipt of a given data set at the WSDC all
data shall be processed through the WSDS Scan/Frame pipeline which performs
basic image calibration and source extraction from on images from individual
orbits. The results of this processing step shall be Level 1 source extractions and
image data, which are loaded into the WISE Level 1 extracted Source Working
Database (L1WDB) and Image Archive allowing access by the WISE Science
Team for external quality assessment.

L4WSDC-042: The WSDS Pipeline processing shall remove the instrumental
signature from Level 0 image frames.

L4WSDC-062: The WSDC shall perform quality analysis of all WISE science
data and make reports available on a regular basis.

The tempcal module is run offline on a list of preselected survey data images. Input frames will
have already been precalibrated, e.g., dark subtracted, linearized and flat-fielded. The units of the
pixel values are native WISE “scaled-slope” units as computed onboard for detector ramps.
More specifically, they will be in units of scaled DN/SUR, where DN means Data Number and
SUR means Sample Up the Ramp.

Short-term variations in the bias, dark (and possibly gain) structure over an array will not be
captured by ground calibrations. The ground calibrations are designed to remove instrumental
signatures that are essentially static in the long term. If the short-term systematic variations are
not removed, they will persist as residuals and impact photometric accuracy. These can be
corrected by computing a robust estimate of a zero-mean (or zero-median) background image
from N ~ 50 - 100 frames within a moving block window along the WISE orbit, then subtracting
this from all the frames in that window. The tempcal module will create the sky-offset image
calibration product only, not apply it. It is estimated that at least 50 - 100 frames will be needed
to filter out sources reliably across all bands. A window that’s too big may miss the short-term
instrumental variations sought for. An important assumption is that the transient bias/dark
structure is approximately constant over this window span. A schematic of the concept is shown
in Figure 1.

 7

Figure 1. Sky-Offset Schematic

The labels in Figure 1 are defined as follows:

)T = timescale of possible systematic variation
 <S>pixel i, j = median or mean sky signal in single pixel i, j over stack of N frames in)T
 <S>all i, j = median or mean sky signal over all pixels and N frames in)T
 Sky-offset correction :)S i, j,)T = <S>pixel i, j - <S>all i, j

The number of frames must satisfy : Nmin # N # N)T , where Nmin is the minimum needed to filter
out stars. If N)T < Nmin (fast instrumental variations), then this method can't be used. The plan is
to determine optimal frame windows Nmin and N)T in IOC.

Note: the angled brackets can represent either a trimmed mean, median or whatever robust
estimator is used to estimate the sky background seen by the pixel in the N-frame stack.

This same module will also perform dynamic pixel masking. The rationale behind this is that it is
the only place in the infrastructure (so far) that gathers all frames pertaining to the same time
interval, ΔT, along a scan. As discussed above, this time-interval may contain 50 - 100 frames, or
.40% of a scan (North-to-South ecliptic pole). If a pixel suddenly becomes hot, it may persist in
this state for the entire interval ΔT, or just part of it for a duration δt. Bad pixels (where the
criteria for ‘bad’ are defined below) occur systematically at the same location in pixel space,
whereas astronomical sources do not. One can therefore envisage a method where if a pixel is
detected as an outlier with respect to its neighbors in the same frame, and it persists in this state
for a time δt in subsequent frames of the stack, then it can be identified as a transient bad pixel.
Pixels identified as permanently bad a priori (e.g., on the ground) are omitted before performing
the ‘dynamic’ bad-pixel search.

 8

1.1.2 Liens

None at this time.

1.2 Applicable Documents

This subsystem conforms to the specifications in the following project documents:

• WISE Science Data Center Functional Requirements Document, WSDC D-R001
• WISE Science Data System Functional Design, WSDC D-D001
• Software Management Plan, WSDC D-M003
• Instrumental Calibration Plans and Considerations:

http://web.ipac.caltech.edu/staff/fmasci/home/wise/SingleOrbit_Cal.html
• Infrastructure and Instrumental Calibration Scan Pipeline:

http://web.ipac.caltech.edu/staff/fmasci/home/wise/ScanPL_instrumental_cal.pdf
• Software Interface Specification (ICL01) Frame Processing Status Mask:

http://web.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal01.txt
• Software Specifications for the tempcal module:

http://web.ipac.caltech.edu/staff/fmasci/home/wise/tempcal_specs.pdf

 9

1.3 Acronyms

2MASS Two-Micron All-Sky Survey
DN Data Number
FITS Flexible Image Transport System
FRD Functional Requirements Document
IOC In-Orbit Checkout
NAXIS1 Number of columns in an image
NAXIS2 Number of rows in an image
Nframes Number of science images to be processed
SDS Subsystem Design Specification
SIS Software Interface Specification
SUR Sample Up the Ramp
W1 WISE wavelength channel 1, 3.4 microns
W2 WISE wavelength channel 2, 4.6 microns
W3 WISE wavelength channel 3, 12 microns
W4 WISE wavelength channel 4, 22 microns
WISE Wide-field Infrared Survey Explorer
WSDC WISE Science Data Center
WSDS WISE Science Data System

2 Input

2.1 Control Input

Tempcal reads control input in the form of Fortran Namelist files and command-line parameters.
For control parameters included in both command line and namelist inputs, the command line
inputs override.

 10

 2.1.1 Tempcal Command-Line Parameters

The command-line parameters for Tempcal are given by its tutorial display:

tempcal version: 1.6 A90716 - execution begun on 17-07-09 at 9:26:55

Usage: tempcal

 -f1 <inp_img_list_fname> (Required; list of pre-calibrated frames in
 FITS format)

 -f2 <inp_mask_list_fname> (Optional; list of bad-pixel masks in 32-bit INT
 FITS format; only values 0 -> 2^31 are used)

 -f3 <inp_unc_list_fname> (Optional; list of uncertainty images in FITS
 format)

 -lt <lower_threshold> (Optional; lower-tail threshold for in-frame
 outlier [candidate bad-pixel and global sky
 estimate] detection; Default = 5 sigma)

 -ut <upper_threshold> (Optional; upper-tail threshold for in-frame
 outlier [candidate bad-pixel and global sky
 estimate] detection; Default = 5 sigma)

 -ng <num_grids> (Optional; number of partitions per axis for
 temporal outlier [candidate bad-pixel]
 detection; Default = 3)

 -lts <lower_SO_thresh> (Optional; lower-tail threshold for temporal
 outlier [relative to sky] detection;
 Default = 5 sigma)

 -uts <upper_SO_thresh> (Optional; upper-tail threshold for temporal
 outlier [relative to sky] detection;
 Default = 5 sigma)

 -pn <frame_persist_num> (Optional; minimum number of consecutive frames
 in time-ordered sequence of stack for which an
 'outlier pixel' must persist to be declared bad;
 Default = number of frames in input list)

 -mp <min_pix_in_stack> (Optional; minimum number of pixels in a stack
 to be usable for robust estimation; Default = 5)

 -tlat <Qmax> (Optional; maximum Q probability to tag bad-pixel
 run as latent; default = 0.05)

 -c <chi-square_max> (Optional; maximum reduced chi-square of sky
 offset for reliable uncertainty; Default = 3)

 -m <inp_mask_bits> (Optional; mask template [decimal] specifying
 bits to flag/omit from processing; Default = 0)

 11

 -p <out_maskdy_bits> (Required if <-f2> specified; mask template
 [decimal] specifying bit to set in _specific_
 input masks for dynamic bad-pixel masking)

 -tf 0 (Optional; turn off transient flagging)

 -ts 0 (Optional; turn off sky-offset computation)

 -so 1 (Optional; subtract the frame offset from
 each pixel before computing sky offset;
 Default = 0)

 -st 0 (Optional; do not subtract the partition offset
 from each pixel before checking for latent
 decay; Default = 1)

 -s <out_maskso_bits> (Required if <-f2> specified; mask template
 [decimal] specifying bit to set in _all_ input
 masks for unreliable/erroneous sky-offset)

 -su <out_maskso_bits> (Required if <-f2> specified; mask template
 [decimal] specifying bit to set in _all_ input
 masks for unreliable uncertainty in sky-offset)

 -pl <out_maskso_bits> (Required if <-f2> specified; mask template
 [decimal] specifying bit to set in affected
 masks for probable latent contamination)

 -o1 <out_skyoff_img> (Required if sky-offset computation is selected;
 output sky-offset image FITS filename)

 -o2 <out_skyoff_unc_img> (Required if sky-offset computation is selected;
 output sky-offset uncertainty image FITS filename)

 -o3 <out_chi-square_img> (Optional; output sky-offset chi-square image
 FITS filename)

 -o4 <out_Nused_img> (Optional; output image of #pixels used in stack;
 FITS filename)

 -n <namelist> (Optional; namelist file name)

 -qa <qa_file_name> (Optional; switch to generate a QA file named
 as specified)

 -d (Optional; switch to print debug statements
 to stdout, ancillary QA to ascii files)

 -v (Optional; switch to increase verbosity to stdout)

 12

 2.1.2 Tempcal Namelist Parameters

The Tempcal module optionally reads a NAMELIST file. The name of this file must be given on
the command line via the “-n” option. The name of the NAMELIST is tmpcalin. The parameters
defined in the NAMELIST are as follows.

Name Description Dim Type Units Default
ChiSqMax Maximum reduced chi-square 1 R*4 - 3.0
 of sky offset (if prior
 uncertainties given) or
 ratio of dynamic range to
 sky-offset uncertainty
 (if no prior uncertainties)
 not to flag sky-offset
 uncertainty as potentially
 unreliable

ITimSlic1 Lower column number for 1 I*4 - 0
 time-slice image output
 (see section 4.6)

ItimSlic2 Upper column number for 1 I*4 - 0
 time-slice image output
 (see section 4.6)

JTimSlic1 Lower row number for 1 I*4 - 0
 time-slice image output
 (see section 4.6)

JtimSlic2 Upper row number for 1 I*4 - 0
 time-slice image output
 (see section 4.6)

Mask Mask template [decimal] 1 I*4 - 0
 specifying bits to omit
 from processing

MinPersist Minimum number of conse- 1 I*4 - Nframes
 cutive frames in time-
 ordered sequence of stack
 for which an 'outlier
 pixel' must persist to be
 declared bad

MinPix Minimum number of pixels 1 I*4 - 5
 In a stack for the stack
 to be usable for robust
 estimation

NamWrt If T, namelist will be 1 L*4 - F
 written to stdout

 13

Name Description Dim Type Units Default
Ng Number of grid divisions 1 I*4 - 3
 per image axis for parti-
 tions in which transient
 behavior is analyzed

Qmax Maximum Q probability 1 R*8 - 0.05
 (i.e., 1-P, P = cumulative
 probability of binomial
 distribution) of number of
 chronological pixel value
 drops to flag as latent

SkpST If T, sky-offset computa- 1 L*4 - F
 tion and transient flagging
 will be skipped (to save time
 when only time-slice images
 are desired)

SubOff If T, each value for a 1 L*4 - F
 given pixel will have the
 corresponding frame offset
 subtracted before the
 pixel’s sky offset is com-
 puted; if F, this is not
 done, and instead the global
 frame offset is subtracted
 from the pixel’s absolute
 offset to obtain the pixel’s
 sky offset

SubOffTran If T, each value for a 1 L*4 - F
 given pixel will have the
 corresponding partition
 offset subtracted before
 latent testing

ThrshHi Positive offset in sigma 1 R*4 - 5.0
 units from frame offset
 limiting non-outlier
 pixel range for bad-pixel
 identification

ThrshHiS Positive offset in sigma 1 R*4 - 5.0
 units from frame offset
 limiting non-outlier
 pixel range for sky-offset
 computation

ThrshLo Negative offset in sigma 1 R*4 - 5.0
 units from frame offset
 limiting non-outlier
 pixel range for bad-pixel
 identification

ThrshLoS Negative offset in sigma 1 R*4 - 5.0
 units from frame offset
 limiting non-outlier
 pixel range for sky-offset
 computation

 14

2.2 ASCII Input

Tempcal reads one to three ASCII (text) file lists of FITS file names corresponding to FITS
images. One is required, and its name is specified on the command line via the “-f1” flag; this is
the list of names of science images. If the “-f2” flag was used, then a list of mask images is also
read, and if the “-f3” flag was used, then a list of uncertainty images is read. These last two lists
must be in one-to-one correspondence with the first list, i.e., the nth mask image and the nth
uncertainty image must correspond to the the nth science image. Each list is read, the number of
lines is counted, and all must have the same number of lines; this number is used for memory
allocation. Then the lists are rewound, each line is read, and the corresponding file is read into
memory. The file name on each line must be left-justified and is case-sensitive. Path names may
be included and are required if the FITS files are not in the working directory.

2.3 FITS Input

For each line in each ASCII file described in section 2.2 above, tempcal reads the FITS file
whose name is given. All FITS images must have the same values for the following header
parameters: NAXIS (must be 2), NAXIS1, NAXIS2, and BAND. Each frame must have its own
parameter UNIXT, which is used to force time order in the frame stack. In addition, the keyword
FRSETID is sought in the first input intensity image; if found, it must also be in all subsequent
intensity images and is used to construct the FRMIDSEQ keyword for the output sky-offset FITS
image.

 15

3 Processing

3.1 Initialization

The tempcal module initializes itself by:

A.) reading and processing its control inputs;

B.) verifying that all required inputs were given;

C.) reading the lists of FITS files and allocating memory;

D.) reading in all specified FITS images;

E.) sorting an index array of UNIXT values;

F.) generating a table of Mmin values (see section 3.4.1) if transient analysis has been
 selected.

3.2 Sky-Offset Computation

The tempcal module performs sky-offset computation using all unmasked pixels unless this
function was deselected (“-ts 0” in section 2.1.2). If no mask files were specified, then all
pixels are treated as unmasked.

 3.2.1 Frame Offset Computation

The first step is to compute a “standard offset” for each science image; by “standard offset”, we
mean a robust estimate of the representative sky background, the median signal that would be
observed if there were no point-like objects or radiation hits. This will be called simply the
“offset” for brevity, and this term will be applied to entire frames (spatial distribution of signal),
to “partitions” of frames (spatial distribution of signal over separate portions of an entire frame),
and also to pixel stacks containing all unmasked samples of a given array pixel (temporal
distribution of signal seen by the pixel). We use the term “offset” to avoid the more specific
terms such as “median”, “trimmed average”, etc., which imply specific algorithms that may not
be in use. The tempcal code is modularized to facilitate installing different robust estimation
algorithms for the “offset” of frames, partitions, and chronological pixel stacks; this is designed
to allow different methods to be tried, and any new accepted variations will have a corresponding
version of this SDS.

When initialization was performed, all frames to be processed were loaded into a three-
dimensional data cube in memory occupying 4*NAXIS1*NAXIS2*Nframes bytes for the

 16

science images, and the same each for optional uncertainty images and optional mask images.
For W1, W2, and W3, NAXIS1 = NAXIS2 = 1016, so for these science images, the amount of
memory required in bytes is 4.12904e6*Nframes. For W4, NAXIS1 = NAXIS2 = 508, so for W4
science images, the amount of memory required in bytes is 1.032256e6*Nframes.

An example of a minimal processing run would be 50 W4 frames with no masks or uncertainties.
The total input-image memory for this case is 51.6 MB. An example of a typical expected case
would be 100 W1 frames including science, uncertainty, and mask images. The total input-image
memory for this case is 1.24 GB.

A loop over all frames is executed, and in this loop, the following processing is performed on
each frame:

• A one-dimensional stack is loaded with all pixel values that are neither masked nor NaN.
• If the number of values in the stack is less than MinPix (see section 2.1.2), an offset

value of NaN is returned; otherwise processing continues.
• The stack is sorted in ascending value, and the median value is found.
• The standard deviation of the lower 50%-tile about the median is computed, F50.
• All values in the stack that are either less than median–ThrshLo*F50 or greater than

median+ThrshHi*F50 are compressed out of the stack (see section 2.1.2, ThrshLo,
ThrshHi).

• The remaining stack is re-sorted into ascending order, and the new median is found; this
is the frame offset.

• The standard deviation about the offset is computed for the values in the compressed
stack, F.

• Frame outlier limits are computed and returned for storage and later use if Ng = 1 (only
one partition per frame); if SubOff is T (see section 2.1.2), then these are the lower limit
FramLo = -ThrshLo*F and FramHi = ThrshHi*F, otherwise they are
FramLo = offset - ThrshLo*F and FramHi = offset + ThrshHi*F. Note that the purpose
of this adjustment is to keep SubOff from affecting transient analysis; its purpose is
exclusively to reduce the effects of background variation on pixel offset estimation.

After all frame offsets have been computed, all values that are not NaN are put into a stack,
sorted, and the median is computed; this is the global frame offset that will be subtracted from
each pixel’s raw offset to obtain the pixel’s sky offset if SubOff = F (see section 2.1.2). If
SubOff = T, then each pixel will have had its corresponding frame offset subtracted before
going into the stack used to estimate its sky offset, and no global or frame offset will need to be
subtracted afterwards.

 17

3.2.2 Pixel Offset Computation

A loop over all array pixels is performed, and inside this loop each pixel is processed as
described below.

• The pixel’s value in each science frame in the data cube is examined; if no uncertainties
were input, then if the pixel value is not NaN and not masked, the value is put into a pixel
stack; if uncertainties were input, then these same conditions must be met by the science
and uncertainty values, and in addition the uncertainty must be greater than zero
(including not NaN); if and only if these conditions are met, the science data value and
the uncertainty value are both placed into separate stacks; values accepted for a stack are
placed there in increasing time order (the pixels are accessed via the index array of sorted
UNIXT values), and another index array is filled which specifies from which frame
number in the data cube the pixel came; if SubOff is T (see section 2.1.2), then each
science pixel’s corresponding frame offset is subtracted from the science data value as
this value is loaded into the stack.

• If the number of values in the stack is less than MinPix, values of zero are returned for
the sky offset and uncertainty, and if mask inputs were given, the pixel’s value in all
input masks has bits set for unreliable/erroneous sky offset and uncertainty; if the number
of values in the stack is greater than or equal to MinPix, processing continues.

• The time-ordered pixel stack is copied into a temporary buffer which is sorted into
ascending order, and the median is found.

• The standard deviation of the lower 50%-tile about the median is computed, F50.
• All values in the stack that are either less than median–ThrshLoS*F50 or greater than

median+ThrshHiS*F50 are compressed out of the stack.
• A new median is found, the median of the remaining stack; this is the pixel’s “sky offset”

if the frame offsets have already been subtracted off (SubOff = T), and otherwise it is
the pixel’s raw offset, and the global frame offset is subtracted from it to obtain the
pixel’s sky offset.

• The uncertainty of the sky offset is found as follows; if pixel uncertainties were input,
then the uncertainties corresponding to pixels retained for the sky offset computation
(after outlier rejection) are used to compute an inverse-variance uncertainty for the sky
offset; if no pixel uncertainties were input, then the sample variance about the offset is
computed for the N values in the compressed stack, divided by N-1, and the square root is
used as the uncertainty; in either case, the uncertainty is then scaled by /B/2 to account for
the additional uncertainty of the median.

• Sanity checking of the pixel sky offset is performed as follows; if pixel uncertainties were
input, then chi-square is computed and the reduced chi-square value must be less than
ChiSqMax (see section 2.1.2); if pixel uncertainties were not input, then the dynamic
range of the compressed stack is divided by the uncertainty of the sky offset, and the ratio
must be less than ChiSqMax; in either case, if the condition is not satisfied and if
masking is being performed, then the bit indicating an unreliable/erroneous sky-offset
uncertainty is set for the pixel in all input masks.

 18

3.3 Transient Pixel Identification and Latent Image Tagging

Unless transient identification was deselected (no masks input or “–tf 0” was specified on the
command line), the following processing is performed in the same loop over pixels as the above
section. If frame partitioning was selected, i.e., if Ng > 1 (see section 2.1.2; by default, Ng = 3),
then a modification to that description must be made; the loop in section 3.2.2 is performed after
the partitions are set up, and what was called “frame outlier limits” in section 3.2.1, FramLo and
FramHi, are computed for each partition separately before entering that loop. This partition
processing has no effect on the sky-offset computation, and so its description was deferred to this
section. By the same token, adjustments made to pixel values by SubOff have no effect on
either transient identification or latent flagging.

 3.3.1 Partition Setup And Outlier Limits

If the number of partitioned grids per axis, Ng, was specified greater than 1 (default 3), then
arrays of pixel coordinates are set up to control loops over partitions in terms of frame pixel
coordinates. These arrays are named Ig0, IgF, Jg0, and JgF. A partition is identified by its index
on each axis, Ig and Jg. For example the grid corresponding to the 2nd partition in the direction of
increasing column number and the 3rd partition in the increasing row direction has Ig = 2 and
Jg = 3. A nested loop over this partition would run from J = Jg0(3) to JgF(3) for the outer loop
and from I = Ig0(2) to IgF(2) for the inner loop. These partition limits are computed as follows.

loopend
NJgFNJgthenNif

NIgFNIgthenNif
RNroundNJgF
CNroundNIgF

NtoNonloop
JgIg

N
N

R
N

N
C

g

g

rows

g

cols

1)1()(01
1)1()(01

)()(
)()(

:1
1)1(0,1)1(0

,

+−=>
+−=>

Δ×=
Δ×=

=
==

=Δ=Δ

Since we have Ncols = Nrows, the partitions will never be more than one row or column off from
being square, and the entire frame will be covered.

Next, the processing described in section 3.2.1 for an entire frame is repeated for each partition,
and what is called the frame offset there becomes the partition offset, and what are called the
frame outlier limits there become the partition outlier limits. The latter are now based on the
robust estimate of spatial pixel variance in the partition about the partition offset. This
compensates for background variations that can be tracked better in the partitions than in entire

 19

frames. Note that this has no effect on the sky-offset computation, which remains as described in
section 3.2.2; only transient and latent identification are affected by the partitioning.

 3.3.2 Mmin Setup

Latent tagging is confined to runs of transient pixel behavior, as described in section 3.3.3 below.
Within such runs, it is based on identifying a statistically significant excess of drops in
chronologically consecutive pixel values in the stack that was set up as described in section 3.2.1
above. The decision employs the following null hypothesis: whether a pixel’s sample-to-sample
value increases or decreases within a transient run is equivalent to the flip of a fair coin, with
heads corresponding to an increase in value and tails corresonding to a decrease. Thus the signs
of the first differences in the stack follow the binomial distribution if the null hypothesis is true.
If the null hypothesis is false, then the case of interest is when the number of drops is excessive,
since this is expected to be typical of a latent decay signature. It is desired not to require a
specific shape to the decay; although it is plausible that the shape might be that of an exponential
decay, or a superposition of such decays with different time constants. The calibration of such
specific models is historically difficult and unreliable. The one feature that can be expected with
high confidence is an excess of negative first differences. Only after a transient run has been
identified is this signature of latent decay sought, and this is done by computing the statistical
significance of the number of drops given the number of first differences.

The binomial probability distribution is

 mnm pp
mnm

npmnP −−
−

=)1(
)!(!

!),,(

where n is the number of first differences, m is the number of drops, and p is the probability of a
drop. For a “fair coin” model, p = ½, and we can write simply

 nmnm
nmnP

2
1

)!(!
!),(
−

=

Since it may be necessary to evaluate this probability hundreds of thousands of times, and since
the possible values of n are known to run from MinPersist/2-1 to NFrames-1 (see section
2.1.2), during initialization, a table is generated that provides the values for the minimum value
of m to reject the null hypothesis as a function of n. The minimum value of m is that for which

max

1

0

max
0

1),(

1),(

QnkP

QnkP

m

k

m

k

−<

−≥

∑

∑
−

=

=

 20

where Qmax is the value of the parameter Qmax that may be specified on the command line with
the “-tlat” flag or via namelist (see sections 2.1.1 and 2.1.2) and which defaults to 0.05. These
minimum values are stored in an array Mmin(N). For example, given the default value for Qmax,
the Mmin(N) values for N = 10 to 20 are:

 N Mmin
 10 8
 11 8
 12 9
 13 9
 14 10
 15 11
 16 11
 17 12
 18 12
 19 13
 20 14

When a transient run of length K is identified as described below, the number of drops M is
counted and tested for M $ Mmin(K-1); if this test is passed, then the transient run is also tagged
as a latent, in which case the first sample in the transient run is not tagged as either, since it is
apparently the bright source that caused the latent. There is one exception to this: if the transient
run began on the very first sample in the stack, then it is more likely that the transient run was
already in progress before the first sample than that the transient run coincidentally began on the
first sample, and so in this case, all samples in the run are tagged as both transient and latent.

 3.3.3 Transient Identification and Decay Tagging

The pixel stack that was prepared as described in section 3.2.1 above is examined in time order.
If SubOff = T, then the frame offsets will have been subtracted from both the pixel samples
and the frame/partition limits; hence SubOff plays no role in transient identification, which
depends only on a sample’s value relative to its limits. This pixel stack will be called PixStak,
and the number of samples in it is NPixStak. A second pixel stack named LatStak is also
prepared in the same way but with two exceptions: SubOff has no effect on it, and if
SubOffTran = T, then the corresponding partition offsets are subtracted from each sample.
LatStak is used only to define the signs of the first differences; subtracting off partition offsets
generally alters the first differences because the partition offsets generally vary with time. This
can affect whether a given first difference is positive or negative, the crucial question for latent
identification.

Runs of consecutive pixel values that are all outside the outlier limits (FramLo and FramHi, as
discussed in section 3.2.1, if Ng = 1, otherwise the partition limits discussed in section 3.3.1) are

 21

identified. If the number of such consecutive pixels is at least as large as MinPersist (see
section 2.1.2), and if mask inputs were given, then the corresponding mask pixels have bits set to
indicate transient behavor. If the run began with the first pixel in the stack or ended at the last
pixel in the stack, then it need not be as long as MinPersist; it need be only at least as long as
(MinPersist+1)/2. If any part of the stack was flagged as transient, then the entire mask stack
for that pixel has the bit set indicating unreliable sky offset. Note the first sample that was tagged
as transient may be subsequently un-tagged if the run is also identified as latent, since
presumably it is a legitimate obervation of a bright object that caused the latent behavior. This
un-tagging of the first latent/transient sample will be done if and only if it is not also the first
sample in the stack, since that precludes knowledge of whether it is the first sample of the bright
object.

Transient identification makes use of a simple finite state machine to supply a memory of
whether a string of outliers is being seen as the pixel stack is traversed chronologically forward.
This involves a logical variable named IzOut that indicates that for a given sample, the previous
one lay outside the limits, which will be denoted PixLo and PixHi below to indicate frame limits
(if Ng = 1) or partition limits (if Ng > 1). The identification of a transient “run” is accomplished
as illustrated in the pseudocode below, which also contains statements in italic Arial font whose
sole purpose is to support latent flagging.

 22

• Initialize IzOut to False
• Loop over stack chronologically forward from N = 1 to NPixStack
• If (PixStak(N) < PixLo) or (PixStak(N) > PixHi) then {sample out of limits}
• If not IzOut then {if not already in transient run}
• IzOut = True {change state to “transient run underway”}
• NT1 = N {mark beginning of transient run}
• NDrops = 0 {initialize counter for pixel value decrease}
• End if
• NT2 = N {currently in transient run, tag last sample}
• If (NT2 > NT1) then {count the number of drops}
• If (LatStak(N) < LatStak(N-1))
• then NDrops Z NDrops+1
• End if
• Else {pixel sample is in limits}
• If IzOut then {we just ended an out-of-limits run}
• IzOut = False {reset state to “not in transient run”}
• If (NT2-NT1+1 $ MinPersist)
• or ((NT1 = 1) and (NT2 $ (MinPersist+1)/2)) then {transient run}
• Latent = (NDrops $ Mmin(NT2-NT1)) {check latent}
• If Latent and (NT1 > 1) {if latent, don’t tag first }
• then NT1 Z NT1+1 { sample as transient/latent}
• Set transient mask bits for samples NT1 to NT2
• If Latent, set Latent mask bits for samples NT1 to NT2
• End if
• End if
• End If
• End loop
• If IzOut and (NPixStak-NT1+1 $ (MinPersist+1)/2) then {if transient run at loop end}
• Latent = (NDrops $ Mmin(NT2-NT1)) {check latent}
• If Latent and (NT1 > 1) {if latent, don’t tag first sample as transient latent}
• then NT1 Z NT1+1
• Set transient mask bits for samples NT1 to NT2
• If Latent, set Latent mask bits for samples NT1 to NT2
• End if

 23

4 Output

 4.1 Sky-Offset FITS Output

The main output (“-o1” command-line parameter) is a FITS file containing the sky-offset image.
An example header is below. The angle brackets indicate information whose literal content
depends on actual execution or generation circumstances.

SIMPLE = T / file does conform to FITS standard
BITPIX = -32 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 1016 / length of data axis 1
NAXIS2 = 1016 / length of data axis 2
BAND = 1 / WISE band number (1, 2, 3 or 4)
NUMINP = 70 / Number of input frames used
UTCSBGN = 1260864418 / Earliest UTCS in frame stack [sec]
UTCSEND = 1261051979 / Latest UTCS in frame stack [sec]
FRMIDSEQ= <’Num..Num’> / Range of frameIDs used
COMMENT Generated by tempcal vsn 1.25 A80715 on 15-07-08 at 11:46:58
COMMENT This is a sky offset image

Notes:
• BITPIX = -32 refers to single precision floating point.
• For bands 1, 2 and 3, the input frames will have NAXIS1 = NAXIS2 = 1016. For band 4,

NAXIS1 = NAXIS2 = 508.
• The UTCSBGN, UTCSEND keywords specify the start/end observation time of frames

in the input ensemble. These time tags will be available in the input frame headers [e.g.,
UNIXT].

• The FRMIDSEQ specifies the range of input frame IDs: a string composed of the min
and max ID delimited by two dots, e.g., ‘31412..31505’ (note: currently the frame ID is
not included in the header by the ingest subsystem; it is embedded in the file name, but
the WISE system engineer advises against parsing the file name to obtain frame ID on the
basis that file naming may vary under certain conditions; once the ingest subsystem is
upgraded to include the frame ID in the FITS headers, this keyword will be added).

 4.2 Sky-Offset Uncertainty FITS Output

If the “-o2” command-line parameter was specified, a FITS file containing the sky-offset
uncertainty will be generated. An example header is given below.

SIMPLE = T / file does conform to FITS standard
BITPIX = -32 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 1016 / length of data axis 1
NAXIS2 = 1016 / length of data axis 2
COMMENT Generated by tempcal vsn 1.25 A80715 on 15-07-08 at 11:46:58
COMMENT This is a sky offset uncertainty image

 24

 4.3 Mask Updates

If mask inputs and bit numbers are specified, then any of the four conditions diagnosed by
tempcal result in updates to these masks. The bit numbers are specified in terms of their decimal
equivalents, not bit addresses; in other words, if bit 3 is to be set (where the WISE standard for
bit numbering assigns zero to the least-significant bit), then this is specified as the value 8 (23). If
any given mask bit is desired not to be set despite its condition being diagnosed, a value of zero
may be specified for the mask bit value on the command line The conditions diagnosed and
command-line specification flags are:

• Transient behavior, “-p”
• Possibly unreliable sky offset, “-s”
• Possibly unreliable sky-offset uncertainty, “-su”
• Probable latent, “-pl” (note: the second character is a lower-case “L”, not a numeral

“one”)

If a sky offset is considered possibly unreliable, its uncertainty always is also. A sky offset may
be considered reliable, however, and still have a possibly unreliable uncertainty (e.g., when the
outlier-rejected stack has a significant slope with respect to time). These bits are set in every
mask for every input science image.

When transient/latent behavior is diagnosed, only the masks corresponding to the frames in
which this behavior is believed to exist have the bits set for these conditions, although all frames
are tagged as having unreliable sky offset and uncertainty. When latent behavior is identified, the
first image is not tagged as either latent or transient, because it is believed to be a measurement
of the true source that caused the latent. The exception to this is when the transient run began on
the first sample, in which case it cannot be considered the first sample to react to a bright source.

Note that the input masks themselves are updated. Making backup copies of the masks prior to
execution is advised.

 4.4 Optional Chi-Square FITS Output

If the “-o3” command-line specification is given, and if sky-offset computation has not been
deselected, and if uncertainty images have been given, then the chi-square image is generated.
This is the reduced chi-square for every unmasked pixel described in section 3.2.

()

∑
= −

−
=

ij

ij

N

n sijn

ijijn

ij
ij

sp
N 1

22

2
2 1

σσ
χ

where the pixel is in the hardware array at column i and row j, pijn is the pixel’s sample at stack
location n, and the total number of usable samples in the stack is Nij. The summation shown is

 25

over usable samples only. The pixel’s sky offset is sij, and the denominator in the summation is
the uncertainty variance of pijn with the uncertainty variance of sij subtracted to compensate for
the fact that the differences in the numerator are defined by observed values minus a central
value computed from these very observed values.

 A sample image from test data is shown below.

 26

 4.5 Optional Sample-Size FITS Output

If the “-o4” command-line specification is given, and if sky-offset computation has not been
deselected, then the sample-size image is generated. This is the image of the number of pixel
values remaining in the stack after outlier rejection for every unmasked pixel as described in
section 3.2. A sample image from test data is shown below.

 27

 4.6 Optional Time-Slice FITS Output

If the namelist parameters ITimSlic1 and ITimSlic2 are specified non-zero, and/or if the
namelist parameters JTimSlic1 and JTimSlic2 are specified non-zero (see section 2.1.2),
then column-range time-slice and/or row-range time-slice images are generated, respectively.
"Time-slice" imaging is the generation of FITS files in which consecutive columns correspond to
consecutive times in the image stack. Rows in these images may be either hardware array rows
or hardware array columns; tempcal will take a specified range of rows or columns (or both, but
the results go into separate output images) and generate an image in which the horizontal axis is
time and the vertical axis is either row or column. Since rows and columns are handled in
analogous fashion, we will describe the column-slice case, which employs ITimSlic1 and
ITimSlic2.

If a range of columns is specified, then the image consists of a concatenation of data-cube slices,
each slice containing one full row vs. all times, with such slices concatenated for the specified
column range, up to 1016 total columns, with additional columns placed into additional output
images as needed. This concatenation over column-time slices is set to come as close as possible
to a square image without the number of columns exceeding the number of rows. If the number
of columns ITimSlic2-ITimSlic1+1 is too large to fit all the slices into one image, then more than
one image is generated, with the last column in one image being the first in the next, and the last
image containing the same number of slices as the others but ending on ITimSlic2, and therefore
possibly having more overlap with the previous image than a single repeated slice.

The images are contained in FITS files named automatically by tempcal as follows: column-slice
and row-slice images names begin with ColSlice and RowSlice, respectively; this is followed by
an underscore, a four-digit number giving the first hardware column or row in the image, another
underscore, and the last hardware column or row in the image. For example, the test data set
consisted of 70 time-consecutive science images, so the the time extent is 70 samples, and this is
mapped into the horizontal direction. The science images consist of 1016 columns and 1016
rows, so up to 14 slices are concatenated into a single FITS image to arrive at a nearly square
image product of 980 columns and 1016 rows. In such an image, the row number is either a
hardware row number (for column-range slices) or hardware column number (for row-range
slices), and the column number is the time-sample number plus 70 times the number of
preceding slices. For example, column 500 corresponds to time sample number 10 in the 8th time
slice, i.e., there are seven preceding time slices, so the 10th time sample in the 8th time slice is at
image column number 7×70 + 10 = 500. In general, with K frames in the stack, time-slice image
column I corresponds to time sample N in slice M, where M = [(I-1)/K]truncated + 1, and
N = modulo(I-1,K) + 1.

For example, a test run was made in which the namelist input was:

 $tmpcalin
 JTimSlic1 = 501, JTimSlic2 = 600,
 $end

 28

This requests 100 rows in the range 501 to 600. The first time slice contains the 70 time samples
and the 1016 hardware columns at hardware row 501, so the leftmost 70 columns and 1016 rows
in the time-slice image contain this slice. The next 70 columns and 1016 rows contain the time
slice for hardware row 502. This tiling of time slices continues up to the time slice for hardware
row 514, which is at the right side of the image. No more slices are concatenated, because this
would give the image 1050 columns, more than the number of rows, and this is the arbitrary
cutoff for keeping the time-slice images approximately square.

The namelist shown above produced the eight time-slice images shown below:

-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0501-0514.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0514-0527.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0527-0540.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0540-0553.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0553-0566.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0566-0579.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0579-0592.fits
-rw-rw-r-- 1 jwf wise 3985920 Jul 25 11:54 RowSlice_0587-0600.fits

Note that each image contains 14 slices, and the last slice of each image is the first slice in the
next. The last image ends with hardware row 600, and since it also contains 14 slices like the
others, it begins with hardware row 587, and thus has more than the single-slice overlap with its
predecessor. This is done to keep all the time-slice images the same size.

A sample time-slice image is shown below. This is RowSlice_0501_0514.fits. The presence of
latent images is immediately obvious, as these show up as streaks in the horizontal (time)
direction. The vertical extent of each point source is the image blur in the hardware-column
direction. Latent images caused by bright sources generally begin with a significant vertical
extent and are followed by a decaying streak. Radiation hits often appear as narrow horizontal
streaks. A particularly bright source with a latent tail can be seen near the top of the image; the
multiple apparitions spaced 70 columns apart are all the same source seen in adjacent rows. The
70-column width of each time slice can be visually estimated fairly easily because of repetitive
patterns like this, even the less striking ones.

 29

 30

4.7 QA Output

If the command-line flag “-qa” is used to specify a QA output file name, and if transient
processing has been selected, then a table file header is generated containing the information
illustrated below with sample values from a test run.

\ statistics file generated by tempcal vsn 1.61 A90720 on 20-07-09 at 13:41:37
\Ntrans = 8 / Number of transient runs
\Nlat = 1 / Number of latents tagged
\MinPersist = 15 / Minimum run length to diagnose transient
\Qmax = 0.050 / Maximum binomial Q probability for latent
\MedTrans = 9 / Median transient run length
\MedDrops = 4 / Median number of pixel drops
\MedFdrop = 0.500 / Median fraction of drops/run
\MedTransT = 9 / MedTrans for Transient-only
\MedDropsT = 4 / MedDrops for Transient-only
\MedFdropT = 0.500 / MedFdrop for Transient-only
\MedTransL = 9 / MedTrans for Latent-tagged
\MedDropsL = 6 / MedDrops for Latent-tagged
\MedFdropL = 0.750 / MedFdrop for Latent-tagged

The parameters are intended to be self-explanatory. This test case illustrates some of the
numerical results than can appear confusing at first sight. MinPersist is 15 samples, yet the
median transient run lengths are 9, which is less than 15. This is because most of the 8 transient
runs began on the first sample; runs that begin on the first sample or continue through the last
sample are required only to be at least (MinPersist+1)/2 samples long. Only one run was
also diagnosed as a latent (Nlat = 1), so the “median” values are the only values that occurred.
The length was 9 samples, in which the number of drops was 6; two things appear to be
incorrect: (a.) the drop fraction, MedFdropL, is shown as 0.750, which is not equal to
MedDropsL/MedTransL = 6/9; (b.) for the Qmax shown, Mmin(9) = 7, but only 6 drops were
observed, so this seems not to qualify as a latent. Both of these anomalies are caused by the fact
that the run began on the first sample, as detailed debug output shows (see below). The run was 9
samples long, hence there were 8 first differences, of which 6 were drops; Mmin(8) = 6, so this
qualifies as a latent, and 6/8 = 0.750, so MedFdropL is correct. But since the run began on the
first sample, that sample is tagged in the mask and included in the run length, hence 9 is reported
as the length. If an identical run had started on the second or later sample, MedTransL would
have had the value 8.

The original detection of a "bad" run involves K samples running from N1 to N2 in the stack,
K $ MinPersist (or (MinPersist+1)/2 if the run is at the beginning or end of the stack).
The K samples permit only K-1 differences, so the number of drops M can never be equal to K
under any circumstances. M is always tested against Mmin(K-1); a latent is diagnosed if and only
if M $ Mmin(K-1). If the run is not diagnosed as a latent, then the run length is
N = K = N2-N1+1. If the run is diagnosed as a latent, then the first sample is no longer
considered part of the run, provided that it can be established that the first sample really was the
first violation of the outlier test, i.e., provided there was a sample preceding it that was not an

 31

outlier. This cannot be established if the first sample in the run is the first sample in the stack. So
when a latent is diagnosed, we always have M $ Mmin(K-1), but the run length N is set to K-1 if
N1 > 1; this happens because if N1 > 1, then N1 is incremented, which decrements the values of
N2-N1+1 = N, i.e., we label the run as starting one sample after the first outlier. When N1 = 1,
the run is considered to be measured from the first sample and including that sample, so N1 is
not incremented, and the value of N = N2-N1+1 remains equal to K. Therefore the drop fraction
is M/(K-1) = M/N if N1 > 1, otherwise it is M/(K-1) … M/N, since N = K in this case.

Also note that if a frame's pixel is skipped in PixStak due to masking or any other reason, the
next usable pixel counts as the next chronological pixel for transient/latent purposes.

4.8 Debug Output

If the command-line flag “-d” is used to invoke debug output, and if transient processing has
been selected, then two text files are generated, the TimeOrderedFrmList.txt file and the
Badstats.tbl file, and three FITS files are generated. BadStart.fits, BadEnd.fits, and nDrop.fits.
The three FITS files all have the dimensions of the WISE images being processed, and all have
BITPIX = 16; they contain information concerning the single longest transient run (if any) for
each pixel: the first sample number, the last sample number, and the number of drops in the run,
respectively. Values of zero indicate that no transient run occurred.

The TimeOrderedFrmList.txt file contains a list of the input intensity images in time order, one
per line, with an ordinal counter at the beginning of the line. This may be useful when
knowledge of the chronological order is needed, since the program does not require the input
lists to be in any particular order, although the list of mask files and/or uncertainty images must
be in the same order as the list of intensity images. A sample from a test run is shown below.
This test had 50 intensity images, of which the first and last five are shown.

 1 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a222-w3-int-1b.fits
 2 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a223-w3-int-1b.fits
 3 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a224-w3-int-1b.fits
 4 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a225-w3-int-1b.fits
 5 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a226-w3-int-1b.fits

 46 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a271-w3-int-1b.fits
 47 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a272-w3-int-1b.fits
 48 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a273-w3-int-1b.fits
 49 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a274-w3-int-1b.fits
 50 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a276-w3-int-1b.fits

The Badstats.tbl file contains information on the longest transient run for each pixel that had at
least one such run. The header contains definitions of the column parameters. An example is
shown below from the same run as that used as an example in section 4.7 above; the more
detailed information here supplies the explanation for the apparent anomalies discussed there.

 32

\ statistics file generated by tempcal vsn 1.61 A90720 on 20-07-09 at 13:41:37
\Ntrans = 8 / Number of transient runs
\ COLUMN HEADER DESCRIPTIONS:
\ I = Pixel column number
\ J = Pixel row number
\ N1 = Run-begin stack sample number
\ N2 = Run-end stack sample number
\ N = Run length
\ M = Number of pixel-to-pixel drops in value
\ Mmin = Minimum M to tag latent, f(N)
\ fDrop = Ratio of pixel drops to run length, M/N
\ nR = Number of separate runs in stack
\
| I | J | N1| N2| N | M |Mmin|fDrop|nR|
| int| int|int|int|int|int| int| real| i|
 3 763 1 22 22 13 14 0.619 1
 8 764 1 9 9 4 6 0.500 1
 2 770 33 49 17 9 12 0.529 1
 12 775 43 50 8 4 6 0.500 1
 3 777 9 32 24 9 16 0.375 1
 12 948 1 8 8 4 6 0.571 2
 925 948 1 9 9 3 6 0.375 1
 12 949 1 9 9 6 6 0.750 1

Both files show that 8 transient runs occurred. All runs with length N less than MinPersist (15)
either began on sample 1 (N1 = 1) or ended on the last sample in the stack (N2 = 50). The last
transient run was tagged as a latent; this is the only one with M = Mmin (6). Although the header
says that fDrop is M/N, this pixel is an exception because the run began on the first sample,
which is therefore considered part of the run of 9 samples, but with only 8 first differences to
test, fDrop is really 6/8, as explained in section 4.7.

5 Testing and Parameter Tuning

5.1 Tempcal Testing

The tempcal module has been unit-tested with simulated data hand-edited to force the various
processing paths to be traversed. It has also been tested with simulated FITS data generated by
N. Wright for a mid-ecliptic-latitude region around zero degrees longitude and 30 degrees
latitude.

5.2 Tempcal Parameter Tuning

The tempcal input parameters which control robust estimation of the sky offset and transient
pixel behavior will require tuning prior to their use in routine pipeline processing. The chi-square
image should prove useful in this activity, since effective outlier rejection should leave a set of
pixel samples which is well behaved with respect to prior uncertainty and local background
noise. The two most important parameters are (see section 2.1.2) ThrshHi and ThrshLo. Also

 33

of special interest are MinPersist, MinPix, and ChiSqMax. Finally, the optimal number of
consecutive frames has to be determined.

6 Example Command Lines

The following example reads in a list of image FITS file names (-f1), corresponding masks
(-f2), and uncertainty images (-f3). The output sky-offset image (-o1) will be named
skyoff.fits, the output sky-offset uncertainty image (-o2) will be named sig_skyoff.fits, a
reduced chi-square image (-o3) to be named chsq.fits is requested, and a sample-size image
(-o4) named nused.fits is also requested. The minimum number of consecutive outlier samples
to define transient behavior (-pn) is set to 20. Samples with input mask bits 1 and 2 set will not
be processed (-m) since the value 6 was specified, and 6 = 22 + 21 (see section 4.3). Samples
diagnosed as transient will have bit 21 set in all corresponding masks (-p), since 2097152 (221)
was specified. Similarly, mask bits 23, 28, and 25 will be set for unreliable sky offsets (-s),
unreliable sky-offset uncertainties (-su), and probable latents (-pl), respectively, since values
of 8388608 (223), 268435456 (228), and 33554432 (225), respectively, were specified.

% tempcal -f1 intlist -o1 skyoff -o2 sig_skyoff -o3 chsq -o4 nused \
 -f3 unclist -f2 masklist -pn 20 -p 2097152 -m 6 -s 8388608 \
 -su 268435456 -pl 33554432

