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1    Introduction 
 

 
1.1    Subsystem Overview 
 

This document presents the requirements, design, algorithms, and state of implementation of the 
Tempcal (Temporary Effects Calibration) subsystem of the WSDC data processing system. 
Tempcal runs offline on all or part of a single scan. 
 

 
1.1.1  Requirements 
 

Tempcal is required to compute a pixel ‘sky-offset’ image and to identify and flag persistent new 
“bad” pixels in a stack of N consecutive frames along a scan. This is the essence of dynamic 
pixel masking; tempcal updates FITS mask images by turning on bits in the pixel data to indicate 
conditions that it diagnoses. The Level 4 requirements supported by this processing are as 
follows. 
 

L4WSDC-012: Flux measurements in the WISE Source Catalog shall have a SNR 
of five or more for point sources with fluxes of 0.12, 0.16, 0.65 and 2.6 mJy at 
3.3, 4.7, 12 and 23 micrometers, respectively, assuming 8 independent exposures 
and where the noise flux errors due to zodiacal foreground emission, instrumental 
effects, source photon statistics, and neighboring sources (traceable to Level-1). 
 
L4WSDC-013: The root mean square error in relative photometric accuracy in the 
WISE Source Catalog shall be better than 7% in each band for unsaturated point 
sources with SNR>100, where the noise flux errors due to zodiacal foreground 
emission, instrumental effects, source photon statistics, and neighboring sources. 
This requirement shall not apply to sources that superimposed on an identified 
artifact (traceable to Level-1). 
 
L4WSDC-024: The WSDC shall generate and maintain an archive of the 
calibrated, single epoch WISE images for the duration of the project for use by 
the Project Team. The purposes of this archive are quality assurance, transient 
analysis and moving object identification. Self-derived Demonstration Define 
duration of project. 
 
L4WSDC-037: The WSDC Pipelines subsystem shall convert raw WISE science 
and engineering data into calibrated images and extracted source lists from which 
the preliminary and final WISE data products will be derived. 
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L4WSDC-039: Within 3 days from receipt of a given data set at the WSDC all 
data shall be processed through the WSDS Scan/Frame pipeline which performs 
basic image calibration and source extraction from on images from individual 
orbits. The results of this processing step shall be Level 1 source extractions and 
image data, which are loaded into the WISE Level 1 extracted Source Working 
Database (L1WDB) and Image Archive allowing access by the WISE Science 
Team for external quality assessment. 
 
L4WSDC-042: The WSDS Pipeline processing shall remove the instrumental 
signature from Level 0 image frames. 
 
L4WSDC-062: The WSDC shall perform quality analysis of all WISE science 
data and make reports available on a regular basis. 
 

The tempcal module is run offline on a list of preselected survey data images. Input frames will 
have already been precalibrated, e.g., dark subtracted, linearized and flat-fielded. The units of the 
pixel values are native WISE “scaled-slope” units as computed onboard for detector ramps. 
More specifically, they will be in units of scaled DN/SUR, where DN means Data Number and 
SUR means Sample Up the Ramp. 
 
Short-term variations in the bias, dark (and possibly gain) structure over an array will not be 
captured by ground calibrations. The ground calibrations are designed to remove instrumental 
signatures that are essentially static in the long term. If the short-term systematic variations are 
not removed, they will persist as residuals and impact photometric accuracy. These can be 
corrected by computing a robust estimate of a zero-mean (or zero-median) background image 
from N ~ 50 - 100 frames within a moving block window along the WISE orbit, then subtracting 
this from all the frames in that window. The tempcal module will create the sky-offset image 
calibration product only, not apply it. It is estimated that at least 50 - 100 frames will be needed 
to filter out sources reliably across all bands. A window that’s too big may miss the short-term 
instrumental variations sought for. An important assumption is that the transient bias/dark 
structure is approximately constant over this window span. A schematic of the concept is shown 
in Figure 1. 
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Figure 1.  Sky-Offset Schematic 
 
The labels in Figure 1 are defined as follows: 
 
 )T = timescale of possible systematic variation 
 <S>pixel i, j = median or mean sky signal in single pixel i, j over stack of N frames in )T 
 <S>all i, j = median or mean sky signal over all pixels and N frames in )T 
 Sky-offset correction : )S i, j,)T = <S>pixel i, j - <S>all i, j 
 
The number of frames must satisfy : Nmin # N # N)T , where Nmin is the minimum needed to filter 
out stars. If N)T  < Nmin (fast instrumental variations), then this method can't be used. The plan is 
to determine optimal frame windows Nmin and N)T in IOC. 
 
Note: the angled brackets can represent either a trimmed mean, median or whatever robust 
estimator is used to estimate the sky background seen by the pixel in the N-frame stack. 
 
This same module will also perform dynamic pixel masking. The rationale behind this is that it is 
the only place in the infrastructure (so far) that gathers all frames pertaining to the same time 
interval, ΔT, along a scan. As discussed above, this time-interval may contain 50 - 100 frames, or 
.40% of a scan (North-to-South ecliptic pole). If a pixel suddenly becomes hot, it may persist in 
this state for the entire interval ΔT, or just part of it for a duration δt. Bad pixels (where the 
criteria for ‘bad’ are defined below) occur systematically at the same location in pixel space, 
whereas astronomical sources do not. One can therefore envisage a method where if a pixel is 
detected as an outlier with respect to its neighbors in the same frame, and it persists in this state 
for a time δt in subsequent frames of the stack, then it can be identified as a transient bad pixel. 
Pixels identified as permanently bad a priori (e.g., on the ground) are omitted before performing 
the ‘dynamic’ bad-pixel search. 
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1.1.2 Liens 
 
None at this time. 
 

 
 
1.2    Applicable Documents 

 
This subsystem conforms to the specifications in the following project documents: 

 
• WISE Science Data Center Functional Requirements Document, WSDC D-R001 
• WISE Science Data System Functional Design, WSDC D-D001 
• Software Management Plan, WSDC D-M003 
• Instrumental Calibration Plans and Considerations: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/SingleOrbit_Cal.html 
• Infrastructure and Instrumental Calibration Scan Pipeline: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/ScanPL_instrumental_cal.pdf 
• Software Interface Specification (ICL01) Frame Processing Status Mask: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal01.txt 
• Software Specifications for the tempcal module: 

http://web.ipac.caltech.edu/staff/fmasci/home/wise/tempcal_specs.pdf 
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1.3  Acronyms 
 
2MASS Two-Micron All-Sky Survey 
DN  Data Number 
FITS  Flexible Image Transport System 
FRD  Functional Requirements Document 
IOC  In-Orbit Checkout 
NAXIS1 Number of columns in an image 
NAXIS2 Number of rows in an image 
Nframes Number of science images to be processed 
SDS  Subsystem Design Specification 
SIS  Software Interface Specification 
SUR   Sample Up the Ramp 
W1  WISE wavelength channel 1, 3.4 microns 
W2  WISE wavelength channel 2, 4.6 microns 
W3  WISE wavelength channel 3, 12 microns 
W4  WISE wavelength channel 4, 22 microns 
WISE  Wide-field Infrared Survey Explorer 
WSDC  WISE Science Data Center 
WSDS  WISE Science Data System 
 
 
2    Input 
 

2.1  Control Input 
 

Tempcal reads control input in the form of Fortran Namelist files and command-line parameters. 
For control parameters included in both command line and namelist inputs, the command line 
inputs override. 
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 2.1.1  Tempcal Command-Line Parameters 
 
The command-line parameters for Tempcal are given by its tutorial display: 
 
tempcal version: 1.6  A90716 - execution begun on 17-07-09 at  9:26:55 
 
Usage: tempcal 
 
 -f1 <inp_img_list_fname>  (Required; list of pre-calibrated frames in 
                            FITS format) 
 
 -f2 <inp_mask_list_fname> (Optional; list of bad-pixel masks in 32-bit INT 
                            FITS format; only values 0 -> 2^31 are used) 
 
 -f3 <inp_unc_list_fname>  (Optional; list of uncertainty images in FITS 
                            format) 
 
 -lt <lower_threshold>     (Optional; lower-tail threshold for in-frame 
                            outlier [candidate bad-pixel and global sky 
                            estimate] detection; Default = 5 sigma) 
 
 -ut <upper_threshold>     (Optional; upper-tail threshold for in-frame 
                            outlier [candidate bad-pixel and global sky 
                            estimate] detection; Default = 5 sigma) 
 
 -ng <num_grids>           (Optional; number of partitions per axis for 
                            temporal outlier [candidate bad-pixel] 
                            detection; Default = 3) 
 
 -lts <lower_SO_thresh>    (Optional; lower-tail threshold for temporal 
                            outlier [relative to sky] detection; 
                            Default = 5 sigma) 
 
 -uts <upper_SO_thresh>    (Optional; upper-tail threshold for temporal 
                            outlier [relative to sky] detection; 
                            Default = 5 sigma) 
 
 -pn <frame_persist_num>   (Optional; minimum number of consecutive frames 
                            in time-ordered sequence of stack for which an 
                            'outlier pixel' must persist to be declared bad; 
                            Default = number of frames in input list) 
 
 -mp <min_pix_in_stack>    (Optional; minimum number of pixels in a stack 
                            to be usable for robust estimation; Default = 5) 
 
 -tlat <Qmax>              (Optional; maximum Q probability to tag bad-pixel 
                            run as latent; default = 0.05) 
 
 -c <chi-square_max>       (Optional; maximum reduced chi-square of sky 
                            offset for reliable uncertainty; Default = 3) 
 
 -m <inp_mask_bits>        (Optional; mask template [decimal] specifying 
                            bits to flag/omit from processing; Default = 0) 
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 -p <out_maskdy_bits>      (Required if <-f2> specified; mask template 
                            [decimal] specifying bit to set in _specific_ 
                            input masks for dynamic bad-pixel masking) 
 
 -tf 0                     (Optional; turn off transient flagging) 
 
 -ts 0                     (Optional; turn off sky-offset computation) 
 
 -so 1                     (Optional; subtract the frame offset from 
                            each pixel before computing sky offset; 
                            Default = 0) 
 
 -st 0                     (Optional; do not subtract the partition offset 
                            from each pixel before checking for latent 
                            decay; Default = 1) 
 
 -s <out_maskso_bits>      (Required if <-f2> specified; mask template 
                            [decimal] specifying bit to set in _all_ input 
                            masks for unreliable/erroneous sky-offset) 
 
 -su <out_maskso_bits>     (Required if <-f2> specified; mask template 
                            [decimal] specifying bit to set in _all_ input 
                            masks for unreliable uncertainty in sky-offset) 
 
 -pl <out_maskso_bits>     (Required if <-f2> specified; mask template 
                            [decimal] specifying bit to set in affected 
                            masks for probable latent contamination) 
 
 -o1 <out_skyoff_img>      (Required if sky-offset computation is selected; 
                            output sky-offset image FITS filename) 
 
 -o2 <out_skyoff_unc_img>  (Required if sky-offset computation is selected; 
                            output sky-offset uncertainty image FITS filename) 
 
 -o3 <out_chi-square_img>  (Optional; output sky-offset chi-square image 
                            FITS filename) 
 
 -o4 <out_Nused_img>       (Optional; output image of #pixels used in stack; 
                            FITS filename) 
 
 -n  <namelist>            (Optional; namelist file name) 
 
 -qa <qa_file_name>        (Optional; switch to generate a QA file named 
                            as specified) 
 
 -d                        (Optional; switch to print debug statements 
                            to stdout, ancillary QA to ascii files) 
 
 -v                        (Optional; switch to increase verbosity to stdout) 
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 2.1.2  Tempcal Namelist Parameters 
 
The Tempcal module optionally reads a NAMELIST file. The name of this file must be given on 
the command line via the “-n” option. The name of the NAMELIST is tmpcalin. The parameters 
defined in the NAMELIST are as follows. 
 
Name                  Description                 Dim  Type  Units  Default 
ChiSqMax              Maximum reduced chi-square   1   R*4     -        3.0 
                      of sky offset (if prior 
                      uncertainties given) or 
                      ratio of dynamic range to 
                      sky-offset uncertainty 
                      (if no prior uncertainties) 
                      not to flag sky-offset 
                      uncertainty as potentially 
                      unreliable 
 
ITimSlic1             Lower column number for      1   I*4     -         0 
                      time-slice image output 
                      (see section 4.6) 
 
ItimSlic2             Upper column number for      1   I*4     -         0 
                      time-slice image output 
                      (see section 4.6) 
 
JTimSlic1             Lower row number for         1   I*4     -         0 
                      time-slice image output 
                      (see section 4.6) 
 
JtimSlic2             Upper row number for         1   I*4     -         0 
                      time-slice image output 
                      (see section 4.6) 
 
Mask                  Mask template [decimal]      1   I*4     -         0 
                      specifying bits to omit  
                      from processing 
 
MinPersist            Minimum number of conse-     1   I*4     -    Nframes 
                      cutive frames in time- 
                      ordered sequence of stack 
                      for which an 'outlier 
                      pixel' must persist to be  
                      declared bad  
 
MinPix                Minimum number of pixels     1   I*4     -         5 
                      In a stack for the stack 
                      to be usable for robust 
                      estimation 
 
NamWrt                If T, namelist will be       1   L*4     -         F 
                      written to stdout 
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Name                  Description                 Dim  Type  Units  Default 
Ng                    Number of grid divisions     1   I*4     -         3 
                      per image axis for parti- 
                      tions in which transient 
                      behavior is analyzed 
 
Qmax                  Maximum Q probability        1   R*8     -      0.05 
                      (i.e., 1-P, P = cumulative 
                      probability of binomial 
                      distribution) of number of 
                      chronological pixel value 
                      drops to flag as latent 
 
SkpST                 If T, sky-offset computa-    1   L*4     -         F 
                      tion and transient flagging 
                      will be skipped (to save time 
                      when only time-slice images 
                      are desired) 
 
SubOff                If T, each value for a       1   L*4     -         F 
                      given pixel will have the 
                      corresponding frame offset 
                      subtracted before the 
                      pixel’s sky offset is com- 
                      puted; if F, this is not  
                      done, and instead the global 
                      frame offset is subtracted 
                      from the pixel’s absolute 
                      offset to obtain the pixel’s 
                      sky offset 
 
SubOffTran            If T, each value for a       1   L*4     -         F 
                      given pixel will have the 
                      corresponding partition 
                      offset subtracted before 
                      latent testing 
 
ThrshHi               Positive offset in sigma     1   R*4     -        5.0 
                      units from frame offset 
                      limiting non-outlier 
                      pixel range for bad-pixel 
                      identification 
 
ThrshHiS              Positive offset in sigma     1   R*4     -        5.0 
                      units from frame offset 
                      limiting non-outlier 
                      pixel range for sky-offset 
                      computation 
 
ThrshLo               Negative offset in sigma     1   R*4     -        5.0 
                      units from frame offset 
                      limiting non-outlier 
                      pixel range for bad-pixel 
                      identification 
 
ThrshLoS              Negative offset in sigma     1   R*4     -        5.0 
                      units from frame offset 
                      limiting non-outlier 
                      pixel range for sky-offset 
                      computation 
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2.2  ASCII Input 
 

Tempcal reads one to three ASCII (text) file lists of FITS file names corresponding to FITS 
images. One is required, and its name is specified on the command line via the “-f1” flag; this is 
the list of names of science images. If the “-f2” flag was used, then a list of mask images is also 
read, and if the “-f3” flag was used, then a list of uncertainty images is read. These last two lists 
must be in one-to-one correspondence with the first list, i.e., the nth mask image and the nth 
uncertainty image must correspond to the the nth science image. Each list is read, the number of 
lines is counted, and all must have the same number of lines; this number is used for memory 
allocation. Then the lists are rewound, each line is read, and the corresponding file is read into 
memory. The file name on each line must be left-justified and is case-sensitive. Path names may 
be included and are required if the FITS files are not in the working directory. 

 
 
2.3  FITS Input 
 

For each line in each ASCII file described in section 2.2 above, tempcal reads the FITS file 
whose name is given. All FITS images must have the same values for the following header 
parameters: NAXIS (must be 2), NAXIS1, NAXIS2, and BAND. Each frame must have its own 
parameter UNIXT, which is used to force time order in the frame stack. In addition, the keyword 
FRSETID is sought in the first input intensity image; if found, it must also be in all subsequent 
intensity images and is used to construct the FRMIDSEQ keyword for the output sky-offset FITS 
image. 
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3    Processing 
 

3.1  Initialization 
 

The tempcal module initializes itself by: 
 
A.) reading and processing its control inputs;  
 
B.) verifying that all required inputs were given; 
 
C.) reading the lists of FITS files and allocating memory; 
 
D.) reading in all specified FITS images; 
 
E.) sorting an index array of UNIXT values; 
 
F.) generating a table of Mmin values (see section 3.4.1) if transient analysis has been 
      selected. 
 
 
3.2  Sky-Offset Computation 
 

The tempcal module performs sky-offset computation using all unmasked pixels unless this 
function was deselected (“-ts 0” in section 2.1.2). If no mask files were specified, then all 
pixels are treated as unmasked. 
 
 
 3.2.1  Frame Offset Computation 
 
The first step is to compute a “standard offset” for each science image; by “standard offset”, we 
mean a robust estimate of the representative sky background, the median signal that would be 
observed if there were no point-like objects or radiation hits. This will be called simply the 
“offset” for brevity, and this term will be applied to entire frames (spatial distribution of signal), 
to “partitions” of frames (spatial distribution of signal over separate portions of an entire frame), 
and also to pixel stacks containing all unmasked samples of a given array pixel (temporal 
distribution of signal seen by the pixel). We use the term “offset” to avoid the more specific 
terms such as “median”, “trimmed average”, etc., which imply specific algorithms that may not 
be in use. The tempcal code is modularized to facilitate installing different robust estimation 
algorithms for the “offset” of frames, partitions, and chronological pixel stacks; this is designed 
to allow different methods to be tried, and any new accepted variations will have a corresponding 
version of this SDS. 
 
When initialization was performed, all frames to be processed were loaded into a three-
dimensional data cube in memory occupying 4*NAXIS1*NAXIS2*Nframes bytes for the 
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science images, and the same each for optional uncertainty images and optional mask images. 
For W1, W2, and W3, NAXIS1 = NAXIS2 = 1016, so for these science images, the amount of 
memory required in bytes is 4.12904e6*Nframes. For W4, NAXIS1 = NAXIS2 = 508, so for W4 
science images, the amount of memory required in bytes is 1.032256e6*Nframes. 
 
An example of a minimal processing run would be 50 W4 frames with no masks or uncertainties. 
The total input-image memory for this case is 51.6 MB. An example of a typical expected case 
would be 100 W1 frames including science, uncertainty, and mask images. The total input-image 
memory for this case is 1.24 GB. 
 
A loop over all frames is executed, and in this loop, the following processing is performed on 
each frame: 
 

• A one-dimensional stack is loaded with all pixel values that are neither masked nor NaN. 
• If the number of values in the stack is less than MinPix (see section 2.1.2), an offset 

value of NaN is returned; otherwise processing continues. 
• The stack is sorted in ascending value, and the median value is found. 
• The standard deviation of the lower 50%-tile about the median is computed, F50. 
• All values in the stack that are either less than median–ThrshLo*F50 or greater than 

median+ThrshHi*F50 are compressed out of the stack (see section 2.1.2, ThrshLo, 
ThrshHi). 

• The remaining stack is re-sorted into ascending order, and the new median is found; this 
is the frame offset. 

• The standard deviation about the offset is computed for the values in the compressed 
stack, F. 

• Frame outlier limits are computed and returned for storage and later use if Ng = 1 (only 
one partition per frame); if SubOff is T (see section 2.1.2), then these are the lower limit 
FramLo = -ThrshLo*F and FramHi = ThrshHi*F, otherwise they are 
FramLo = offset - ThrshLo*F and FramHi = offset + ThrshHi*F. Note that the purpose 
of this adjustment is to keep SubOff from affecting transient analysis; its purpose is 
exclusively to reduce the effects of background variation on pixel offset estimation. 
 

After all frame offsets have been computed, all values that are not NaN are put into a stack, 
sorted, and the median is computed; this is the global frame offset that will be subtracted from 
each pixel’s raw offset to obtain the pixel’s sky offset if SubOff = F (see section 2.1.2). If 
SubOff = T, then each pixel will have had its corresponding frame offset subtracted before 
going into the stack used to estimate its sky offset, and no global or frame offset will need to be 
subtracted afterwards. 
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3.2.2  Pixel Offset Computation 
 

A loop over all array pixels is performed, and inside this loop each pixel is processed as 
described below. 
 

• The pixel’s value in each science frame in the data cube is examined; if no uncertainties 
were input, then if the pixel value is not NaN and not masked, the value is put into a pixel 
stack; if uncertainties were input, then these same conditions must be met by the science 
and uncertainty values, and in addition the uncertainty must be greater than zero 
(including not NaN); if and only if these conditions are met, the science data value and 
the uncertainty value are both placed into separate stacks; values accepted for a stack are 
placed there in increasing time order (the pixels are accessed via the index array of sorted 
UNIXT values), and another index array is filled which specifies from which frame 
number in the data cube the pixel came; if SubOff is T (see section 2.1.2), then each 
science pixel’s corresponding frame offset is subtracted from the science data value as 
this value is loaded into the stack. 

• If the number of values in the stack is less than MinPix, values of zero are returned for 
the sky offset and uncertainty, and if mask inputs were given, the pixel’s value in all 
input masks has bits set for unreliable/erroneous sky offset and uncertainty; if the number 
of values in the stack is greater than or equal to MinPix, processing continues. 

• The time-ordered pixel stack is copied into a temporary buffer which is sorted into 
ascending order, and the median is found. 

• The standard deviation of the lower 50%-tile about the median is computed, F50. 
• All values in the stack that are either less than median–ThrshLoS*F50 or greater than 

median+ThrshHiS*F50 are compressed out of the stack. 
• A new median is found, the median of the remaining stack; this is the pixel’s “sky offset” 

if the frame offsets have already been subtracted off (SubOff = T), and otherwise it is 
the pixel’s raw offset, and the global frame offset is subtracted from it to obtain the 
pixel’s sky offset. 

• The uncertainty of the sky offset is found as follows; if pixel uncertainties were input, 
then the uncertainties corresponding to pixels retained for the sky offset computation 
(after outlier rejection) are used to compute an inverse-variance uncertainty for the sky 
offset; if no pixel uncertainties were input, then the sample variance about the offset is 
computed for the N values in the compressed stack, divided by N-1, and the square root is 
used as the uncertainty; in either case, the uncertainty is then scaled by /B/2 to account for 
the additional uncertainty of the median. 

• Sanity checking of the pixel sky offset is performed as follows; if pixel uncertainties were 
input, then chi-square is computed and the reduced chi-square value must be less than 
ChiSqMax (see section 2.1.2); if pixel uncertainties were not input, then the dynamic 
range of the compressed stack is divided by the uncertainty of the sky offset, and the ratio 
must be less than ChiSqMax; in either case, if the condition is not satisfied and if 
masking is being performed, then the bit indicating an unreliable/erroneous sky-offset 
uncertainty is set for the pixel in all input masks. 
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3.3  Transient Pixel Identification and Latent Image Tagging 
 

Unless transient identification was deselected (no masks input or “–tf 0” was specified on the 
command line), the following processing is performed in the same loop over pixels as the above 
section. If frame partitioning was selected, i.e., if Ng > 1 (see section 2.1.2; by default, Ng = 3), 
then a modification to that description must be made; the loop in section 3.2.2 is performed after 
the partitions are set up, and what was called “frame outlier limits” in section 3.2.1, FramLo and 
FramHi, are computed for each partition separately before entering that loop. This partition 
processing has no effect on the sky-offset computation, and so its description was deferred to this 
section. By the same token, adjustments made to pixel values by SubOff have no effect on 
either transient identification or latent flagging. 
 
 

 3.3.1  Partition Setup And Outlier Limits 
 
If the number of partitioned grids per axis, Ng, was specified greater than 1 (default 3), then 
arrays of pixel coordinates are set up to control loops over partitions in terms of frame pixel 
coordinates. These arrays are named Ig0, IgF, Jg0, and JgF. A partition is identified by its index 
on each axis, Ig and Jg. For example the grid corresponding to the 2nd partition in the direction of 
increasing column number and the 3rd partition in the increasing row direction has Ig = 2 and 
Jg = 3. A nested loop over this partition would run from J = Jg0(3) to JgF(3) for the outer loop 
and from I = Ig0(2) to IgF(2) for the inner loop. These partition limits are computed as follows. 
 

                                     

loopend
NJgFNJgthenNif

NIgFNIgthenNif
RNroundNJgF
CNroundNIgF

NtoNonloop
JgIg

N
N

R
N

N
C

g

g

rows

g

cols

1)1()(01
1)1()(01

)()(
)()(

:1
1)1(0,1)1(0

,

+−=>
+−=>

Δ×=
Δ×=

=
==

=Δ=Δ

 

 
Since we have Ncols = Nrows, the partitions will never be more than one row or column off from 
being square, and the entire frame will be covered. 
 
Next, the processing described in section 3.2.1 for an entire frame is repeated for each partition, 
and what is called the frame offset there becomes the partition offset, and what are called the 
frame outlier limits there become the partition outlier limits. The latter are now based on the 
robust estimate of spatial pixel variance in the partition about the partition offset. This 
compensates for background variations that can be tracked better in the partitions than in entire 
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frames. Note that this has no effect on the sky-offset computation, which remains as described in 
section 3.2.2; only transient and latent identification are affected by the partitioning. 
 
 
 3.3.2  Mmin Setup 
 
Latent tagging is confined to runs of transient pixel behavior, as described in section 3.3.3 below. 
Within such runs, it is based on identifying a statistically significant excess of drops in 
chronologically consecutive pixel values in the stack that was set up as described in section 3.2.1 
above. The decision employs the following null hypothesis: whether a pixel’s sample-to-sample 
value increases or decreases within a transient run is equivalent to the flip of a fair coin, with 
heads corresponding to an increase in value and tails corresonding to a decrease. Thus the signs 
of the first differences in the stack follow the binomial distribution if the null hypothesis is true. 
If the null hypothesis is false, then the case of interest is when the number of drops is excessive,  
since this is expected to be typical of a latent decay signature. It is desired not to require a 
specific shape to the decay; although it is plausible that the shape might be that of an exponential 
decay, or a superposition of such decays with different time constants. The calibration of such 
specific models is historically difficult and unreliable. The one feature that can be expected with 
high confidence is an excess of negative first differences. Only after a transient run has been 
identified is this signature of latent decay sought, and this is done by computing the statistical 
significance of the number of drops given the number of first differences. 
 
The binomial probability distribution is 
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where n is the number of first differences, m is the number of drops, and p is the probability of a 
drop. For a “fair coin” model, p = ½, and we can write simply 
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Since it may be necessary to evaluate this probability hundreds of thousands of times, and since 
the possible values of n are known to run from MinPersist/2-1 to NFrames-1 (see section 
2.1.2), during initialization, a table is generated that provides the values for the minimum value 
of m to reject the null hypothesis as a function of n. The minimum value of m is that for which 
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where Qmax is the value of the parameter Qmax that may be specified on the command line with 
the “-tlat” flag or via namelist (see sections 2.1.1 and 2.1.2) and which defaults to 0.05. These 
minimum values are stored in an array Mmin(N). For example, given the default value for Qmax, 
the Mmin(N) values for N = 10 to 20 are: 
 
      N Mmin 
     10     8 
     11     8 
     12     9 
     13     9 
     14   10 
     15   11 
     16   11 
     17   12 
     18   12 
     19   13 
     20   14 
 
When a transient run of length K is identified as described below, the number of drops M is 
counted and tested for M $ Mmin(K-1); if this test is passed, then the transient run is also tagged 
as a latent, in which case the first sample in the transient run is not tagged as either, since it is 
apparently the bright source that caused the latent. There is one exception to this: if the transient 
run began on the very first sample in the stack, then it is more likely that the transient run was 
already in progress before the first sample than that the transient run coincidentally began on the 
first sample, and so in this case, all samples in the run are tagged as both transient and latent. 
 
 
 3.3.3  Transient Identification and Decay Tagging 
 
The pixel stack that was prepared as described in section 3.2.1 above is examined in time order. 
If SubOff = T, then the frame offsets will have been subtracted from both the pixel samples 
and the frame/partition limits; hence SubOff plays no role in transient identification, which 
depends only on a sample’s value relative to its limits. This pixel stack will be called PixStak, 
and the number of samples in it is NPixStak. A second pixel stack named LatStak is also 
prepared in the same way but with two exceptions: SubOff has no effect on it, and if 
SubOffTran = T, then the corresponding partition offsets are subtracted from each sample. 
LatStak is used only to define the signs of the first differences; subtracting off partition offsets 
generally alters the first differences because the partition offsets generally vary with time. This 
can affect whether a given first difference is positive or negative, the crucial question for latent 
identification. 
 
Runs of consecutive pixel values that are all outside the outlier limits (FramLo and FramHi, as 
discussed in section 3.2.1, if Ng = 1, otherwise the partition limits discussed in section 3.3.1) are 
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identified. If the number of such consecutive pixels is at least as large as MinPersist (see 
section 2.1.2), and if mask inputs were given, then the corresponding mask pixels have bits set to 
indicate transient behavor. If the run began with the first pixel in the stack or ended at the last 
pixel in the stack, then it need not be as long as MinPersist; it need be only at least as long as 
(MinPersist+1)/2. If any part of the stack was flagged as transient, then the entire mask stack 
for that pixel has the bit set indicating unreliable sky offset. Note the first sample that was tagged 
as transient may be subsequently un-tagged if the run is also identified as latent, since 
presumably it is a legitimate obervation of a bright object that caused the latent behavior. This 
un-tagging of the first latent/transient sample will be done if and only if it is not also the first 
sample in the stack, since that precludes knowledge of whether it is the first sample of the bright 
object. 
 
Transient identification makes use of a simple finite state machine to supply a memory of 
whether a string of outliers is being seen as the pixel stack is traversed chronologically forward. 
This involves a logical variable named IzOut that indicates that for a given sample, the previous 
one lay outside the limits, which will be denoted PixLo and PixHi below to indicate frame limits 
(if Ng = 1) or partition limits (if Ng > 1). The identification of a transient “run” is accomplished 
as illustrated in the pseudocode below, which also contains statements in italic Arial font whose 
sole purpose is to support latent flagging. 
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• Initialize IzOut to False 
• Loop over stack chronologically forward from N = 1 to NPixStack 
•  If (PixStak(N) < PixLo) or (PixStak(N) > PixHi) then {sample out of limits} 
•   If not IzOut then  {if not already in transient run} 
•    IzOut = True  {change state to “transient run underway”} 
•    NT1 = N  {mark beginning of transient run} 
•    NDrops = 0    {initialize counter for pixel value decrease} 
•   End if 
•   NT2 = N   {currently  in transient run, tag last sample} 
•   If (NT2 > NT1)  then  {count the number of drops} 
•    If (LatStak(N) < LatStak(N-1)) 
•    then NDrops Z NDrops+1 
•   End if 
•  Else     {pixel sample is in limits} 
•   If IzOut then   {we just ended an out-of-limits run} 
•    IzOut = False  {reset state to “not in transient run”} 
•    If (NT2-NT1+1 $ MinPersist) 
•                                      or ((NT1 = 1) and (NT2 $ (MinPersist+1)/2)) then {transient run} 
•     Latent = (NDrops $ Mmin(NT2-NT1))  {check latent} 
•     If Latent and (NT1 > 1) {if latent, don’t tag first  }  
•     then NT1 Z NT1+1  {  sample as transient/latent} 
•     Set transient mask bits for samples NT1 to NT2 
•     If Latent, set Latent mask bits for samples NT1 to NT2 
•    End if 
•   End if 
•  End If 
• End loop 
• If IzOut and (NPixStak-NT1+1 $ (MinPersist+1)/2) then {if transient run at loop end} 
•  Latent = (NDrops $ Mmin(NT2-NT1))   {check latent} 
•  If Latent and (NT1 > 1) {if latent, don’t tag first sample as transient latent}   
•  then NT1 Z NT1+1     
•  Set transient mask bits for samples NT1 to NT2 
•  If Latent, set Latent mask bits for samples NT1 to NT2 
• End if 
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4    Output 
 
 4.1  Sky-Offset FITS Output 
 
The main output (“-o1” command-line parameter) is a FITS file containing the sky-offset image. 
An example header is below. The angle brackets indicate information whose literal content 
depends on actual execution or generation circumstances. 
 
SIMPLE  =                    T / file does conform to FITS standard              
BITPIX  =                  -32 / number of bits per data pixel                   
NAXIS   =                    2 / number of data axes                             
NAXIS1  =                 1016 / length of data axis 1                           
NAXIS2  =                 1016 / length of data axis 2                           
BAND    =                    1 / WISE band number (1, 2, 3 or 4)                 
NUMINP  =                   70 / Number of input frames used                     
UTCSBGN =           1260864418 / Earliest UTCS in frame stack [sec]              
UTCSEND =           1261051979 / Latest UTCS in frame stack [sec] 
FRMIDSEQ=         <’Num..Num’> / Range of frameIDs used                
COMMENT  Generated by tempcal vsn 1.25 A80715 on 15-07-08 at 11:46:58            
COMMENT  This is a sky offset image                                              
 

Notes: 
• BITPIX = -32 refers to single precision floating point. 
• For bands 1, 2 and 3, the input frames will have NAXIS1 = NAXIS2 = 1016. For band 4, 

NAXIS1 = NAXIS2 = 508. 
• The UTCSBGN, UTCSEND keywords specify the start/end observation time of frames 

in the input ensemble. These time tags will be available in the input frame headers [e.g., 
UNIXT]. 

• The FRMIDSEQ specifies the range of input frame IDs: a string composed of the min 
and max ID delimited by two dots, e.g., ‘31412..31505’ (note: currently the frame ID is 
not included in the header by the ingest subsystem; it is embedded in the file name, but 
the WISE system engineer advises against parsing the file name to obtain frame ID on the 
basis that file naming may vary under certain conditions; once the ingest subsystem is 
upgraded to include the frame ID in the FITS headers, this keyword will be added). 

 
 
 4.2  Sky-Offset Uncertainty FITS Output  
 
If the “-o2” command-line parameter was specified, a FITS file containing the sky-offset 
uncertainty will be generated. An example header is given below. 
 
SIMPLE  =                    T / file does conform to FITS standard              
BITPIX  =                  -32 / number of bits per data pixel                   
NAXIS   =                    2 / number of data axes                             
NAXIS1  =                 1016 / length of data axis 1                           
NAXIS2  =                 1016 / length of data axis 2                           
COMMENT  Generated by tempcal vsn 1.25 A80715 on 15-07-08 at 11:46:58            
COMMENT  This is a sky offset uncertainty image    
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 4.3  Mask Updates 
 
If mask inputs and bit numbers are specified, then any of the four conditions diagnosed by 
tempcal result in updates to these masks. The bit numbers are specified in terms of their decimal 
equivalents, not bit addresses; in other words, if bit 3 is to be set (where the WISE standard for 
bit numbering assigns zero to the least-significant bit), then this is specified as the value 8 (23). If 
any given mask bit is desired not to be set despite its condition being diagnosed, a value of zero 
may be specified for the mask bit value on the command line The conditions diagnosed and 
command-line specification flags are: 
 

• Transient behavior, “-p” 
• Possibly unreliable sky offset, “-s” 
• Possibly unreliable sky-offset uncertainty, “-su” 
• Probable latent, “-pl” (note: the second character is a lower-case “L”, not a numeral 

“one”) 
 
If a sky offset is considered possibly unreliable, its uncertainty always is also. A sky offset may 
be considered reliable, however, and still have a possibly unreliable uncertainty (e.g., when the 
outlier-rejected stack has a significant slope with respect to time). These bits are set in every 
mask for every input science image. 
 
When transient/latent behavior is diagnosed, only the masks corresponding to the frames in 
which this behavior is believed to exist have the bits set for these conditions, although all frames 
are tagged as having unreliable sky offset and uncertainty. When latent behavior is identified, the 
first image is not tagged as either latent or transient, because it is believed to be a measurement 
of the true source that caused the latent. The exception to this is when the transient run began on 
the first sample, in which case it cannot be considered the first sample to react to a bright source. 
 
Note that the input masks themselves are updated. Making backup copies of the masks prior to 
execution is advised. 
 
 
 4.4  Optional Chi-Square FITS Output 
 
If the “-o3” command-line specification is given, and if sky-offset computation has not been 
deselected, and if uncertainty images have been given, then the chi-square image is generated. 
This is the reduced chi-square for every unmasked pixel described in section 3.2. 
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where the pixel is in the hardware array at column i and row j, pijn is the pixel’s sample at stack 
location n,  and the total number of usable samples in the stack is Nij. The summation shown is 
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over usable samples only. The pixel’s sky offset is sij, and the denominator in the summation is 
the uncertainty variance of pijn with the uncertainty variance of sij subtracted to compensate for 
the fact that the differences in the numerator are defined by observed values minus a central 
value computed from these very observed values. 
  
 A sample image from test data is shown below. 
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 4.5  Optional Sample-Size FITS Output 
 
If the “-o4” command-line specification is given, and if sky-offset computation has not been 
deselected, then the sample-size image is generated. This is the image of the number of pixel 
values remaining in the stack after outlier rejection for every unmasked pixel as described in 
section 3.2. A sample image from test data is shown below. 
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 4.6  Optional Time-Slice FITS Output 
 
If the namelist parameters ITimSlic1 and ITimSlic2 are specified non-zero, and/or if the 
namelist parameters JTimSlic1 and JTimSlic2 are specified non-zero (see section 2.1.2), 
then column-range time-slice and/or row-range time-slice images are generated, respectively. 
"Time-slice" imaging is the generation of FITS files in which consecutive columns correspond to 
consecutive times in the image stack. Rows in these images may be either hardware array rows 
or hardware array columns; tempcal will take a specified range of rows or columns (or both, but 
the results go into separate output images) and generate an image in which the horizontal axis is 
time and the vertical axis is either row or column. Since rows and columns are handled in 
analogous fashion, we will describe the column-slice case, which employs ITimSlic1 and 
ITimSlic2. 
 
If a range of columns is specified, then the image consists of a concatenation of data-cube slices, 
each slice containing one full row vs. all times, with such slices concatenated for the specified 
column range, up to 1016 total columns, with additional columns placed into additional output 
images as needed. This concatenation over column-time slices is set to come as close as possible 
to a square image without  the number of columns exceeding the number of rows. If the number 
of columns ITimSlic2-ITimSlic1+1 is too large to fit all the slices into one image, then more than 
one image is generated, with the last column in one image being the first in the next, and the last 
image containing the same number of slices as the others but ending on ITimSlic2, and therefore 
possibly having more overlap with the previous image than a single repeated slice. 
 
The images are contained in FITS files named automatically by tempcal as follows: column-slice 
and row-slice images names begin with ColSlice and RowSlice, respectively; this is followed by 
an underscore, a four-digit number giving the first hardware column or row in the image, another 
underscore, and the last hardware column or row in the image. For example, the test data set 
consisted of 70 time-consecutive science images, so the the time extent is 70 samples, and this is 
mapped into the horizontal direction. The science images consist of 1016 columns and 1016 
rows, so up to 14 slices are concatenated into a single FITS image to arrive at a nearly square 
image product of 980 columns and 1016 rows. In such an image, the row number is either a 
hardware row number (for column-range slices) or hardware column number (for row-range 
slices), and the column number is the time-sample number plus 70 times the number of 
preceding slices. For example, column 500 corresponds to time sample number 10 in the 8th time 
slice, i.e., there are seven preceding time slices, so the 10th time sample in the 8th time slice is at 
image column number 7×70 + 10 = 500. In general, with K frames in the stack, time-slice image 
column I corresponds to time sample N in slice M, where M = [(I-1)/K]truncated + 1, and 
N = modulo(I-1,K) + 1. 
 
For example, a test run was made in which the namelist input was: 
 
 $tmpcalin 
   JTimSlic1 = 501, JTimSlic2 = 600, 
 $end 
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This requests 100 rows in the range 501 to 600. The first time slice contains the 70 time samples 
and the 1016 hardware columns at hardware row 501, so the leftmost 70 columns and 1016 rows 
in the time-slice image contain this slice. The next 70 columns and 1016 rows contain the time 
slice for hardware row 502. This tiling of time slices continues up to the time slice for hardware 
row 514, which is at the right side of the image. No more slices are concatenated, because this 
would give the image 1050 columns, more than the number of rows, and this is the arbitrary 
cutoff for keeping the time-slice images approximately square. 
 
The namelist shown above produced the eight time-slice images shown below: 
 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0501-0514.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0514-0527.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0527-0540.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0540-0553.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0553-0566.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0566-0579.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0579-0592.fits 
-rw-rw-r--  1 jwf wise 3985920 Jul 25 11:54 RowSlice_0587-0600.fits 
 
Note that each image contains 14 slices, and the last slice of each image is the first slice in the 
next. The last image ends with hardware row 600, and since it also contains 14 slices like the 
others, it begins with hardware row 587, and thus has more than the single-slice overlap with its 
predecessor. This is done to keep all the time-slice images the same size. 
 
A sample time-slice image is shown below. This is RowSlice_0501_0514.fits. The presence of 
latent images is immediately obvious, as these show up as streaks in the horizontal (time) 
direction. The vertical extent of each point source is the image blur in the hardware-column 
direction. Latent images caused by bright sources generally begin with a significant vertical 
extent and are followed by a decaying streak. Radiation hits often appear as narrow horizontal 
streaks. A particularly bright source with a latent tail can be seen near the top of the image; the 
multiple apparitions spaced 70 columns apart are all the same source seen in adjacent rows. The 
70-column width of each time slice can be visually estimated fairly easily because of repetitive 
patterns like this, even the less striking ones. 
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4.7  QA Output 
 
If the command-line flag “-qa” is used to specify a QA output file name, and if transient 
processing has been selected, then a table file header is generated containing the information 
illustrated below with sample values from a test run. 
 
\  statistics file generated by tempcal vsn 1.61 A90720 on 20-07-09 at 13:41:37 
\Ntrans     =     8  / Number of transient runs 
\Nlat       =     1  / Number of latents tagged 
\MinPersist =    15  / Minimum run length to diagnose transient 
\Qmax       = 0.050  / Maximum binomial Q probability for latent 
\MedTrans   =     9  / Median transient run length 
\MedDrops   =     4  / Median number of pixel drops 
\MedFdrop   = 0.500  / Median fraction of drops/run 
\MedTransT  =     9  / MedTrans for Transient-only 
\MedDropsT  =     4  / MedDrops for Transient-only 
\MedFdropT  = 0.500  / MedFdrop for Transient-only 
\MedTransL  =     9  / MedTrans for Latent-tagged 
\MedDropsL  =     6  / MedDrops for Latent-tagged 
\MedFdropL  = 0.750  / MedFdrop for Latent-tagged 
 
The parameters are intended to be self-explanatory. This test case illustrates some of the 
numerical results than can appear confusing at first sight. MinPersist is 15 samples, yet the 
median transient run lengths are 9, which is less than 15. This is because most of the 8 transient 
runs began on the first sample; runs that begin on the first sample or continue through the last 
sample are required only to be at least (MinPersist+1)/2 samples long. Only one run was 
also diagnosed as a latent (Nlat = 1), so the “median” values are the only values that occurred. 
The length was 9 samples, in which the number of drops was 6; two things appear to be 
incorrect: (a.) the drop fraction, MedFdropL, is shown as 0.750, which is not equal to 
MedDropsL/MedTransL = 6/9; (b.) for the Qmax shown, Mmin(9) = 7, but only 6 drops were 
observed, so this seems not to qualify as a latent. Both of these anomalies are caused by the fact 
that the run began on the first sample, as detailed debug output shows (see below). The run was 9 
samples long, hence there were 8 first differences, of which 6 were drops; Mmin(8) = 6, so this 
qualifies as a latent, and 6/8 = 0.750, so MedFdropL is correct. But since the run began on the 
first sample, that sample is tagged in the mask and included in the run length, hence 9 is reported 
as the length. If an identical run had started on the second or later sample, MedTransL would 
have had the value 8. 
 
The original detection of a "bad" run involves K samples running from N1 to N2 in the stack, 
K $ MinPersist (or (MinPersist+1)/2 if the run is at the beginning or end of the stack). 
The K samples permit only K-1 differences, so the number of drops M can never be equal to K 
under any circumstances. M is always tested against Mmin(K-1); a latent is diagnosed if and only 
if M $ Mmin(K-1). If the run is not diagnosed as a latent, then the run length is 
N = K = N2-N1+1. If the run is diagnosed as a latent, then the first sample is no longer 
considered part of the run, provided that it can be established that the first sample really was the 
first violation of the outlier test, i.e., provided there was a sample preceding it that was not an 
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outlier. This cannot be established if the first sample in the run is the first sample in the stack. So 
when a latent is diagnosed, we always have M $ Mmin(K-1), but the run length N is set to K-1 if 
N1 > 1; this happens because if N1 > 1, then N1 is incremented, which decrements the values of 
N2-N1+1 = N, i.e., we label the run as starting one sample after the first outlier. When N1 = 1, 
the run is considered to be measured from the first sample and including that sample, so N1 is 
not incremented, and the value of N = N2-N1+1 remains equal to K. Therefore the drop fraction 
is M/(K-1) = M/N if N1 > 1, otherwise it is M/(K-1) … M/N, since N = K in this case. 
 
Also note that if a frame's pixel is skipped in PixStak due to masking or any other reason, the 
next usable pixel counts as the next chronological pixel for transient/latent purposes. 
 
 
4.8  Debug Output 
 
If the command-line flag “-d” is used to invoke debug output, and if transient processing has 
been selected, then two text files are generated, the TimeOrderedFrmList.txt file and the 
Badstats.tbl file, and three FITS files are generated. BadStart.fits, BadEnd.fits, and nDrop.fits. 
The three FITS files all have the dimensions of the WISE images being processed, and all have 
BITPIX = 16; they contain information concerning the single longest transient run (if any) for 
each pixel: the first sample number, the last sample number, and the number of drops in the run, 
respectively. Values of zero indicate that no transient run occurred. 
 
The TimeOrderedFrmList.txt file contains a list of the input intensity images in time order, one 
per line, with an ordinal counter at the beginning of the line. This may be useful when 
knowledge of the chronological order is needed, since the program does not require the input 
lists to be in any particular order, although the list of mask files and/or uncertainty images must 
be in the same order as the list of intensity images. A sample from a test run is shown below. 
This test had 50 intensity images, of which the first and last five are shown. 
 
    1 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a222-w3-int-1b.fits 
    2 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a223-w3-int-1b.fits 
    3 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a224-w3-int-1b.fits 
    4 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a225-w3-int-1b.fits 
    5 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a226-w3-int-1b.fits  
 . . . . . . . . . . . . . . .  
   46 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a271-w3-int-1b.fits 
   47 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a272-w3-int-1b.fits 
   48 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a273-w3-int-1b.fits 
   49 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a274-w3-int-1b.fits 
   50 /wise-ops/01/wise/fmasci/NedSim_May09/tempcal/testdata1/00478a276-w3-int-1b.fits  

 
The Badstats.tbl file contains information on the longest transient run for each pixel that had at 
least one such run. The header contains definitions of the column parameters. An example is 
shown below from the same run as that used as an example in section 4.7 above; the more 
detailed information here supplies the explanation for the apparent anomalies discussed there. 
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\  statistics file generated by tempcal vsn 1.61 A90720 on 20-07-09 at 13:41:37 
\Ntrans     =     8  / Number of transient runs 
\ COLUMN HEADER DESCRIPTIONS: 
\ I         = Pixel column number 
\ J         = Pixel row number 
\ N1        = Run-begin stack sample number 
\ N2        = Run-end stack sample number 
\ N         = Run length 
\ M         = Number of pixel-to-pixel drops in value 
\ Mmin      = Minimum M to tag latent, f(N) 
\ fDrop     = Ratio of pixel drops to run length, M/N 
\ nR        = Number of separate runs in stack 
\ 
|  I |  J | N1| N2| N | M |Mmin|fDrop|nR| 
| int| int|int|int|int|int| int| real| i| 
    3  763   1  22  22  13   14 0.619  1 
    8  764   1   9   9   4    6 0.500  1 
    2  770  33  49  17   9   12 0.529  1 
   12  775  43  50   8   4    6 0.500  1 
    3  777   9  32  24   9   16 0.375  1 
   12  948   1   8   8   4    6 0.571  2 
  925  948   1   9   9   3    6 0.375  1 
   12  949   1   9   9   6    6 0.750  1 

 
Both files show that 8 transient runs occurred. All runs with length N less than MinPersist (15) 
either began on sample 1 (N1 = 1) or ended on the last sample in the stack (N2 = 50). The last 
transient run was tagged as a latent; this is the only one with M = Mmin (6). Although the header 
says that fDrop is M/N, this pixel is an exception because the run began on the first sample, 
which is therefore considered part of the run of 9 samples, but with only 8 first differences to 
test, fDrop is really 6/8, as explained in section 4.7. 
 
 
5    Testing and Parameter Tuning 
 

5.1  Tempcal Testing 
 
The tempcal module has been unit-tested with simulated data hand-edited to force the various 
processing paths to be traversed. It has also been tested with simulated FITS data generated by 
N. Wright for a mid-ecliptic-latitude region around zero degrees longitude and 30 degrees 
latitude. 
 
 

5.2  Tempcal Parameter Tuning 
 
The tempcal input parameters which control robust estimation of the sky offset and transient 
pixel behavior will require tuning prior to their use in routine pipeline processing. The chi-square 
image should prove useful in this activity, since effective outlier rejection should leave a set of 
pixel samples which is well behaved with respect to prior uncertainty and local background 
noise. The two most important parameters are (see section 2.1.2) ThrshHi and ThrshLo. Also 
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of special interest are MinPersist, MinPix, and ChiSqMax. Finally, the optimal number of 
consecutive frames has to be determined. 
 
 
6    Example Command Lines 
 
The following example reads in a list of image FITS file names (-f1), corresponding masks 
(-f2), and uncertainty images (-f3). The output sky-offset image (-o1) will be named 
skyoff.fits, the output sky-offset uncertainty image (-o2) will be named sig_skyoff.fits, a 
reduced chi-square image (-o3) to be named chsq.fits is requested, and a sample-size image 
(-o4) named nused.fits is also requested. The minimum number of consecutive outlier samples 
to define transient behavior (-pn) is set to 20. Samples with input mask bits 1 and 2 set will not 
be processed (-m) since the value 6 was specified, and 6 = 22 + 21 (see section 4.3). Samples 
diagnosed as transient will have bit 21 set in all corresponding masks (-p), since 2097152 (221) 
was specified. Similarly, mask bits 23, 28, and 25 will be set for unreliable sky offsets (-s), 
unreliable sky-offset uncertainties (-su), and probable latents (-pl), respectively, since values 
of 8388608 (223), 268435456 (228), and 33554432 (225), respectively, were specified. 
 
% tempcal -f1 intlist -o1 skyoff -o2 sig_skyoff -o3 chsq -o4 nused   \ 
          -f3 unclist -f2 masklist -pn 20 -p 2097152 -m 6 -s 8388608 \ 
          -su 268435456 -pl 33554432 


