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Computing ‘Number of Noise Pixels’ from Data 
 

F. Masci,  version 1.0  (2/26/2009) 
 

 
1.    Introduction 
 
We derive a general expression for the “effective number of noise pixels” Np that can be used on any Point 
Response Function (PRF) image. It is assumed the PRF image is made a priori by combining and re-
sampling a number of background-subtracted point source images. The better the PRF sampling, the more 
accurate the estimate of Np. 
 
In a nutshell, think of Np as the effective number of pixels contributing to the flux-variance of a point 
source. Sometimes this is referred to as the number of pixels per beam. The bigger this number, the broader 
the PRF (hence the ‘poorer’ the image quality - resolution-wise), and the lower the sensitivity overall, i.e., 
sources will exhibit bigger variance on repeated observation. This should become clearer from the 
derivation below (I hope). The final result is given by Equation 10 (boxed). I’ve never been a fan of this 
concept since it glosses over some details of the Poisson-noise dependence across the profile of a point 
source. Life can still proceed without it. In the end, it’s just a number that’s more-or-less proportional to the 
square of the PRF Full-Width at Half-Max (FWHM), e.g., see Equation 13 for the simple case of a 
Gaussian PRF. 
 
 
2.    Derivation 
 
The signal from a source with true flux F as measured in detector pixel i is given by: 
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where ri is the PRF volume normalized to unity: Σiri = 1. The ri are usually estimated by combining point 
source profiles on an upsampled grid. For the derivation below, we assume the ri were estimated on a grid 
with the same pixel size as the detector pixels. We will generalize to different pixel sizes for the ri and Di 
below. Furthermore, if Ri is the un-normalized point source response, 
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The true source flux F can be estimated from an un-weighted linear least-squares by minimizing the cost 
function: 
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Differentiating Eq. 3 with respect to F and setting to zero, the least-squares solution is given by: 
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The noise-variance in F can be derived by adding errors to the true values in Eq. 4: 
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Subtracting true values, squaring, taking expectation values, we have: 
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where we assumed the detector pixels are uncorrelated: <εiεj> = 0 for i ≠ j. The noise-variance in the flux 
estimate F can then be written: 
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Now for the approximation that makes me uncomfortable. We assume that the pixel variance σ2

i across a 
source is approximately constant and there exists some effective variance σ2

eff such that: 
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A constant variance is only true when the counts are dominated by a spatially uniform background and not 
when the counts are source-photon dominated. For the latter case, the σ2

eff must correspond to some average 
or intermediate value of the pixel variance across the source. From Eq. 8, the number of noise pixels Np is 
identified with 
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so that σ2
F ≈ Np σ2

eff. 
 
We include two generalizations to Eq. 9: first, the PRF values ri may be available in un-normalized form, 
e.g., as the Ri in Eq. 2; second, they may have been estimated on a much finer grid than the detector pixels. 
We would like to know the value of Np for the detector pixels, not the PRF pixels. Using Eq. 2 and the fact 
that the PRF and detector pixel scales can be different, the number of noise pixels can be written: 
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where s accounts for differences between the PRF (Ri) pixel size and the native detector pixel size. In 
general, this is the ratio of the native detector pixel area to PRF pixel area: 
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where the CDELT1, CDELT2 refer to standard FITS header keywords for pixel scales along the X and Y 
axes respectively. 
 
As a simple illustration, let’s assume s = 1 and we have an un-normalized top-hat PRF spread over N pixels 
with constant value c. Equation 10 then gives: 
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Therefore, the number of noise pixels is exactly equal to the number of pixels in a top-hat PRF. For a PRF 
with tails that decay fast enough, Eq. 10 will converge to some effective value that’s characteristic of the 
PRF. For a Gaussian PRF, it is not difficult to show that 
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3.    Testing 
 
A program was written to test Eq. 10 on WISE PRFs modeled by Ned Wright using lab data (May 2008). 
These are currently used for profile fit photometry in the WSDS. The program is available from the WISE 
processing environment and the synopsis is as follows: 
 
caustic% noisepix -help2 
 
parameters: 
 
-in                      : string 
# Required input PRF FITS file 
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-n1                      : double           = 1 
# Scale factor for NAXIS1 dimension: detector pix X-scale/PRF X-scale 
 
-n2                      : double           = 1 
# Scale factor for NAXIS2 dimension: detector pix Y-scale/PRF Y-scale 
 
 
Example runs on band 1, 2, 3 & 4 PRFs: 
 
noisepix -in $inpdir/simcal-w1-psf-wpro-01x01-01x01.fits -n1 16 -n2 16 
noisepix -in $inpdir/simcal-w2-psf-wpro-01x01-01x01.fits -n1 16 -n2 16 
noisepix -in $inpdir/simcal-w3-psf-wpro-01x01-01x01.fits -n1 16 -n2 16 
noisepix -in $inpdir/simcal-w4-psf-wpro-01x01-01x01.fits -n1 16 -n2 16 
 
 
A comparison of the Np predictions from Eq. 10 using the WSDS PRFs and independent optical modeling 
by Mark Larsen (SDL) in June 2008 is shown below. The results are in very good agreement. 
 
 

Source W1 W2 W3 W4 
Equation 10 11.649 14.564 42.124 28.778 
Mark Larsen (Jun’08) 11.4  → 14.7 14.6 → 18.3 39.0 → 45.1 27.3 → 28.9 

 


