
Page 1 of 8 

On-Orbit Pixel Responsivity (Flat-field) Estimation 
 

F. Masci,  version 1.0  (3/26/2008) 
 

 

1. Background 
 
This document outlines the specifications for developing a module that takes on-orbit image data and 
creates a responsivity map (flat-field). The responsivity map is a calibration product that stores relative 
pixel-to-pixel responsivity variations for an array. This product will be created dynamically, i.e., when a 
desired number of (good quality) frames become available. It will then be applied to frames in the 
instrumental calibration pipeline. A suggested name for this module is flatcal, for “flat-field calibration”. 
The developer can choose a new name if this doesn’t appeal. 
 
The method is essentially the same as that used on 2MASS where flat-fields were derived from the 
twilight sky. On WISE, we will use the zodiacal background. In a nutshell, the method entails measuring 
the change in intensity in a pixel in response to the variation in overall (e.g., median) intensity in a 
frame. The relative responsivity for a pixel is given by the slope of a robust linear fit to the pixel 
versus overall intensity data. This will use scans where the background is known a priori to increase 
monotonically. It is expected to vary by ~40-50% in bands 1 and 2, and ~30% in bands 3 and 4 from 
an ecliptic pole to equator (~ a quarter orbit). An important assumption for this method to work is that 
every pixel in an array must see the same intrinsic change in the background. A scenario where this 
may fail is described in section 4. We shall refer to this method as the slope method. 
 
The slope method helps mitigate incomplete knowledge of a static absolute dark/bias bias level since 
this effectively cancels out. This is generally not true for the classic flat-field estimation method based 
on combining frames in a stack and then normalizing. In the slope method, short-term fluctuations will 
still contribute to the scatter in the intensity measurements, and hence uncertainties in the final 
responsivity estimates. 
 
Crude estimates by the Project Office show that at least 15 orbits (i.e., 60 quarter orbit scans or 
~thousands of frames) will need to be combined to obtain flats to better than 1% accuracy in bands 1 
and 2. The reason is that the background signal in bands 1 and 2 will be low and many frames are 
needed to get good signal-to-noise. For bands 3 and 4, at least one orbit worth (i.e., 4 quarters) will give 
responsivity maps to the desired accuracy to meet sensitivity requirements. This is a detail that may be 
needed by the developer for memory allocation and resources, especially for bands 1 and 2. 
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2. Command-line Synopsis and I/O 
 
Here’s a baseline (suggested) synopsis – basically the on-screen tutorial if the module is executed with no 
command-line arguments. Some inputs and variables are further discussed in section 3. The developer is 
free to reword, reorder any of the below. I’m sure there’ll be more as development proceeds. 
 
Program flatcal vsn 1.0 
 
Usage: flatcal 
 -f1 <inp_img_list_fname>   (Required: list of input pre-calibrated frames in 
                             FITS format) 
  
 -f2 <inp_mask_list_fname>  (Optional: list of input bad-pixel masks in 32-bit 
                             INT FITS format; only values 0 -> 2^31 are used) 
     
 -f3 <inp_unc_list_fname>   (Optional: list of input uncertainty images in 
                             FITS format) 
 
 -lf <min_frame_signal>     (Optional: minimum median frame signal to retain; 
                             units = native image units; Default = no limit) 
 
 -hf <max_frame_signal>     (Optional: maximum median frame signal to retain; 
                             units = native image units; Default = no limit) 
 
 -lt <lower_threshold>      (Optional: lower-tail SNR threshold for in-frame 
                             outlier trimming; Default = 5) 
 
 -ut <upper_threshold>      (Optional: upper-tail SNR threshold for in-frame 
                             outlier trimming; Default = 5) 
         
 -m  <inp_mask_bits>        (Optional: mask template [decimal] specifying 
                             bits to flag/omit from processing; Default=0) 
 
 -r  <rescale_uncerts>      (Optional switch: if specified, inflate or deflate 
                             input uncertainties to obtain reasonable 
                             chi-squares and parameter uncertainties) 
 
 -o1 <out_slope_img>        (Required: output flat-field [slope-fit] 
                             image FITS filename) 
           
 -o2 <out_slope_unc_img>    (Required: output flat-field [slope-fit] 
                             uncertainty image FITS filename) 
 
 -o3 <out_intercept_img>    (Optional: output intercept-fit image FITS 
                             filename) 
 
 -o4 <out_intercept_unc_img>(Optional: output intercept-fit uncertainty 
                             image FITS filename) 
 
 -o5 <out_co-std-dev_img>   (Optional: output co-standard deviation [between 
                             slope and intercept] image FITS filename; 
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                             pixel value = sign[cov] sqrt[|cov|]) 
 
 -o6 <out_mask_img>         (Optional: output 8-bit mask FITS filename 
                             flagging pixels with unreliable/bad responsivity 
                             estimates) 
 
 -d                         (Optional: switch to print debug statements 
                             to stdout, ancillary QA to ascii files) 
 
 -v                         (Optional: switch to increase verbosity to stdout) 
 

3. Suggested Algorithm and Details 
 
Below is an outline of the main processing steps. I encourage the developer to fill in any gaps. 
 

• Input frames for flat-field creation will have already been pre-filtered according to quality metrics 
at the ingest-QA stage: e.g., frames will be flagged according to those affected by anneals, South 
Atlantic Anomaly passes, other predicted events, but also unforeseen events such as bright sources 
and persistence there from. The frames will have also been pre-calibrated, e.g., de-biased, droop-
corrected, dark subtracted and linearized. The units of the pixel values in each are in native WISE 
“scaled-slope” units with no offset. More specifically, they will be in units of scaled DN/SUR, 
where DN = Data Number and SUR = Sample Up the Ramp. 

 
• The input list will contain frames from as many orbits and scans as are necessary, in no particular 

order. Since the zodiacal background will increase from ecliptic pole to equator, then decrease 
towards the opposite pole, and then repeat again for the second half of an orbit, we make no 
distinction between the different quarter orbits. A plot of signal for the same pixel versus median 
signal over a frame should not matter where in the orbit the frame came from. In other words, we 
expect the ratio of pixel to median frame signal to only vary as a consequence of fluctuations in the 
background on sub-frame scales (from both instrumental transients and the real structure itself). 
Therefore all frames (regardless of orbit location) can be included in the one fit. 

 
• After reading the input frames and accompanying mask/uncertainty images, prior-known bad pixels 

should be flagged according to the mask bits specified by the <–m> input option. These will be 
omitted from further processing. For pixels flagged as permanently bad in all frames, no 
responsivity estimates will be possible. 

 
• It is not known at the time of writing exactly what filters will be needed to isolate the optimum (or 

useful) dynamic range in signals for this exercise. This may be driven by the caveat described in 
section 4, or, since there will be “crowding” at the poles and equator where there won’t be much 
variation in background signal, some trimming of frames may be needed to avoid those regions 
dominating the scatter and deteriorating the fits. I.e., we want to retain sequences of frames where 
the change in background is maximal. One way to filter the input frame list is according to optimum 
ecliptic latitude ranges once we have a better idea of how the WISE sky looks like. Orbit-position 
filtering (if needed) will be done upstream, i.e., when creating the input lists, not in flatcal. Another 
filtering metric involves truncating at pre-determined low/high median frame signal values. This 
type of filtering can be done in flatcal. The input options <-lf> and <-hf> are suggested for this 
purpose. A method for computing the median frame signal is described next. 
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• To compute the median signal in each frame, I suggest using a method that doesn’t significantly 

bias the result due to outliers (e.g., real sources in the upper tail of the pixel histogram). A good all-
round, pseudo-outlier-resistant method is the MADTUT method1 or some variation thereof. This 
method also provides a robust estimate of sigma of the distribution (appropriately scaled for 
consistency with asymptotic normality). This sigma is important because it can be used to detect 
pixels affected by outliers (including sources) in each frame. The input lower/upper signal-to-noise 
ratio thresholds: <-lt> and <-ut> may be used for this purpose. These outliers will wreck havoc in 
the fitting if not flagged. A scheme to detect and flag additional rogue outliers during the fitting 
stage is described below. The latter may not be needed if the bulk can be detected in the above step. 
Note: not all parameters to support the MADTUT method were included in the above synopsis. 
This is because it is relatively parameter insensitive, and any parameters can be included in a 
namelist. At this stage in processing, we expect the median signal med(S), and a list of outlier + 
prior-known bad pixels for each post-filtered input frame (i.e., satisfying -lf < med(S) < -hf) to have 
been stored in memory. 

 
• Unless the developer is feeling ambitious, uncertainties in frame median estimates need not be 

computed and used in the fitting (i.e., for the abscissae). This is because they are expected to be 
about a thousand (i.e., ~ √[10242]) times smaller than the actual pixel-signal uncertainties (the 
ordinate measurements). Note: uncertainties in the abscissae will make the fitting procedure (via χ2 
minimization) non-linear. 

 
• Now to the actual fitting procedure. I suggest using the standard χ2 minimization method2 because 

input prior uncertainties are available, and I’m optimistic that the outlier detection step above will 
be reliable enough to avoid biasing parameter estimates. This obviates the need to implement some 
non-parametric, outlier-resistant regression method. We are interested in fitting a straight-line: y = 
mij x + cij to a data set {xk, yijk}, where here xk corresponds to the median signal in some frame k [ 
med(Sk) ], and yijk to the signal in a specific pixel i, j of frame k [ Sijk ]. Estimates for the slope mij 
(relative responsivity), intercept cij, and their (co)variances when this model is fit to a set of frames 
k = 1…N can be written analytically: 

 

                                                
1 See: http://web.ipac.caltech.edu/staff/fmasci/home/wise/MADTUT_method.pdf 
2 E.g., see: http://web.ipac.caltech.edu/staff/fmasci/home/statistics_refs/Chi-square-min.pdf and 
http://web.ipac.caltech.edu/staff/fmasci/home/statistics_refs/Chi2andLinearFits.pdf 
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Note, if pixel i, j in any frame k was flagged as an outlier, or as bad from an input mask, then that 
pixel (or more specifically, the data-pair {xk, yijk}) should be omitted from the fit. There will be a fit 
for every good pixel, i.e., with sufficient data from all N frames. This obviously excludes pixels 
flagged as (permanently) bad in all frames of the stack. 
 

• The chi-square function for pixel i, j is defined by: 
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If the model and pixel-signal uncertainties are trustworthy, we expect χ2 ≈ DF = N – 2, i.e., the 
number of degrees of freedom. Actually, a χ2 within a few standard deviations of this value is 
considered “good”, i.e., within DF ± 3√(2DF). 
 
Outliers that escaped detection in the frame median step above will inflate the overall χ2 beyond the 
desirable DF + 3√(2DF) maximum. This first step should have detected most of the outliers, and we 
foresee no problem if this was performed a little on the aggressive side (e.g., clipping at ±3σ) since 
we expect a good number of pixels (N) to have survived across frames to enable a reliable measure 
of the slope. The following 2nd pass outlier detection step is therefore optional, and it may be 
included in a future upgrade of flatcal in case the initial outlier detection step does not perform as 
expected. This special processing should only be performed if a command-line switch is set (not 
shown in above synopsis). If set, then processing should proceed as follows: 
 

1. If χ2 > DF + n√[2DF], where n is some input parameter (e.g., default value 3), then 
either there could be an outlier, or, the σy_ijk are under-estimated. Our hypothesis here is 
that the larger than expected χ2 is due to outliers alone. If this condition is not satisfied, 
stop here, otherwise go to step 2. 

2. Find the largest residual in absolute value: rmax = | yijk – mijxk – cij |; 
3. Reject the measurements (xk, yijk) corresponding to rmax from the data-set, and estimate 

new values for the slope, intercept and chi-square: mij, cij and χ2
new = χ2(mij,cij). 
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4. If χ2
new ≤ DF + n√[2DF], stop here. If this condition is not satisfied, go back to 1 and 

repeat the process by omitting the next largest residual. Continue iterating until some 
pre-specified fraction f of the N initial measurements (xk, yijk) have been rejected. A 
suggested default for f is 0.5. 

 
If there is no convergence to give χ2

new ≤ DF + n√[2DF] after N*f measurements have been 
discarded, this is a strong indication that the input uncertainties σy_ijk have been under-estimated. 
Note, we are ignoring here the (unlikely) possibility that the initial assumption of a linear model 
was bad. However if initially χ2 < DF – n√[2DF], this is an indication that the σy_ijk have been over-
estimated. This leads to the next step: uncertainty rescaling. 
 

• Rescaling of the input uncertainties should only be considered if the input switch <-r> was 
specified. It should only be performed if the final value of χ2 (after any additional outlier rejection) 
satisfies: | χ2 – DF | > n√[2DF], where n is some input parameter (same as above). This rescaling is 
needed in order to obtain reasonable estimates for uncertainties in the slope (responsivity) and 
intercept. As an aside, if all the σy_ijk were equal to the same value, m and c would be independent 
of the σy_ijk but σm and σc would depend on them explicitly (see equations above). This means that 
for the m and c estimates, σy_ijk merely contribute as (inverse-variance) weighting factors, but for σm 
and σc the magnitude of the σy_ijk are crucial. The input σy_ijk can be scaled by the operation: 
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where DF is the number of degrees of freedom, N – 2, and N is the number of data-points used in 
the final fit. Following this rescaling, m and c need not be re-estimated. This will only affect σm, σc 
and cov(m, c). 
  

• The output product files specified by <-o1>, <-o2>, <-o3>, <-o4>, and <-o5> are FITS images of 
the slope (responsivity), slope 1-σ uncertainty, intercept, intercept 1-σ uncertainty, and signed co-
standard deviation respectively. An example header is below. The angle brackets indicate 
information whose literal content depends on actual execution or generation circumstances. 

 
SIMPLE  =                    T / file does conform to FITS standard 
BITPIX  =                  -32 / number of bits per data pixel 
NAXIS   =                    2 / number of data axes 
NAXIS1  =                <Num> / length of data axis 1 
NAXIS2  =                <Num> / length of data axis 2 
BAND    =                <Num> / WISE band number (1, 2, 3 or 4) 
NUMINP  =                <Num> / Number of input frames used 
UTCSBGN =                <Num> / Earliest UTCS in frame stack [sec] 
UTCSEND =                <Num> / Latest UTCS in frame stack [sec] 
FRMIDSEQ=         <’Num..Num’> / Range of frameIDs used 
COMMENT <type> for WISE flat calibration, created <YYYY-MM-DD> 
COMMENT generated by flatcal, v.1.0 on <YYYY-MM-DD> at <HH:MM:SS> 
 

Notes: 
 
o BITPIX = -32 refers to single precision floating point. 
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o For bands 1, 2 and 3, the input frames will have NAXIS1 = NAXIS2 = 1016. For band 4, 
NAXIS1 = NAXIS2 = 508. 

o The UTCSBGN, UTCSEND keywords specify the start/end observation time of frames in the 
input ensemble. These time tags will be available in the input frame headers [e.g., UTCS_OBS] 

o The FRMIDSEQ specifies the range of input frame IDs: a string composed of the min and max 
ID delimited by two dots, e.g., ‘31412..31505’. The frame IDs will be present in the input 
frame headers [keyword unknown at time of writing]. 

o The second-last COMMENT field indicates the product type where <type> is any one of the 
above five product names. 

 
• If a slope estimate was unreliable or could not be computed for any pixel: e.g., flagged due to a 

permanently bad pixel in the stack, too many outliers (hence not enough data), or too noisy (with 
signal-to-noise ratio m/σm < 2, a suggested default), then a bit should be set in the output mask <-
o6> if provided on input. It is left to the developer to decide if each of these conditions will merit 
their own bit in the mask. 

 

4. Potential Caveat 
 
It was mentioned above that for the slope method to be reliable, every pixel in an array must see the same 
intrinsic change in the background on average. An example where this may fail is if the background 
intensity exhibits some curvature along a scan. This implies that there will be a gradient that changes from 
frame-to-frame. The signals in pixels (relative to the frame median background) located at the extreme 
edges of a frame along the in-scan direction will change in a systematic manner along the scan. This will 
bias their slope (hence relative responsivity) estimates towards either the low or high side depending on 
where the pixels are located. A schematic of this is shown in Figure 1. 
 
We will not find out if this effect is significant until we’re in orbit. It may be that the dynamic range (i.e., 
~40-50% background variation from an ecliptic pole to equator, irrespective of longitude) is too small for 
curvature effects to dominate over the background fluctuations. If so, we will need an additional pre-
filtering step to ensure the input frames don’t exhibit gradients that depend systematically on the total 
signal, e.g., only use frames from the (linear) portion of a scan, assuming such exists. In other words, we 
want any gradients in frames along a scan to be more-or-less random and independent of signal. This 
filtering may be adequately handled by the functionality outlined in the 4th bullet point of section 3. 
 
To check if global curvature effects are biasing the slope (hence responsivity), one can test either of the 
following hypotheses for the slope (m) and intercept (c) for pixels located respectively at the 
maximum/minimum extremities of a frame along the in-scan direction: 
 

c > 0 & m < 1      and      c < 0 & m > 1, 
 
where “maximum” here is defined as that frame edge closest to the ecliptic equator. If these conditions are 
significant, i.e., unlikely to have occurred by chance given the errors in c and m, then nature isn’t being 
kind. As a quick check, one can also examine the m and c images directly for patterns consistent with the 
above.  It also doesn’t hurt to check that the median background does indeed exhibit curvature in the right 
direction (i.e., is concave-down like in Fig. 1 where d2med(S)/dt2 < 0, and t is time measured for a frame 
sequence going from pole to equator). If these conditions are satisfied, then further pre-processing of the 
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input data is needed. These checks are beyond the scope of the flatcal module. This caveat is described here 
for future reference in case it becomes a problem. We are optimistic that nature will be kind. 
 
 

 
Figure 1: schematic showing exaggerated curvature in the background and its impact 


