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Abstract. We describe a new image co-addition tool, AWAIC, to support
the creation of a digital Image Atlas from the multiple frame exposures acquired
with the Wide-field Infrared Survey Explorer (WISE). AWAIC includes prepara-
tory steps such as frame background matching and outlier detection using robust
frame-stack statistics. Frame co-addition is based on using the detector’s Point
Response Function (PRF) as an interpolation kernel. This kernel reduces the im-
pact of prior-masked pixels; enables the creation of an optimal matched filtered
product for point source detection; and most important, it allows for resolution
enhancement (HiRes) to yield a model of the sky that is consistent with the
observations to within measurement error. The HiRes functionality allows for
non-isoplanatic PRFs, prior noise-variance weighting, uncertainty estimation,
and includes a ringing-suppression algorithm. AWAIC also supports the popu-
lar overlap-area weighted interpolation method, and is generic enough for use
on any astronomical image data that supports the FITS and WCS standards.

1. Introduction

The goal of image co-addition is to optimally combine a set of (usually dithered)
exposures to create an accurate representation of the sky, given that all instru-
mental signatures, glitches, and cosmic-rays have been properly removed. By
“optimally”, we mean a method which maximizes the signal-to-noise ratio (SNR)
given prior knowledge of the statistical distribution of the input measurements.

The Wide-field Infrared Survey Explorer (WISE) mission will be generating
over a million exposures (or frames) over the sky. WISE is a NASA Midex
mission scheduled for launch in late 2009. It will survey the entire sky at 3.3,
4.7, 12, and 23µm with sensitivities up to three orders of magnitude beyond
those achieved with previous all-sky surveys. For details on the scientific goals,
requirements, instrument and mission design, see Mainzer et al. 2005. One of
the primary products from WISE is a digital Image Atlas that combines the
multiple 8.8 second, 47′ × 47′ frame exposures within predefined tiles over the
sky. To support this, we have developed a suite of software modules collectively
referred to as AWAIC for execution in the automated processing pipeline at the
Infrared Processing and Analysis Center. The modules are written in ANSI-
compliant C and wrapped into a Perl script, and will be made portable in the
near future.

Here we review AWAIC’s co-addition algorithms, products, and extension to
resolution enhancement (HiRes). It’s important to note that HiRes is not in the
WISE baseline plan. It was implemented primarily to support offline research.
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Figure 1. Processing steps in WISE frame co-addition pipeline.

The statistical robustness and performance of algorithms will be addressed in
more detail in future papers.

2. WISE Frame Co-addition Pipeline

Figure 1 gives an overview of the co-addition steps. It is assumed that the input
science frames have been preprocessed to remove instrumental signatures and
their pointing refined in some WCS using an astrometric catalog. Accompany-
ing bad-pixel masks (in 32-bit integer format) and prior-uncertainty frames are
optional. The frames are assumed to overlap with some predefined footprint (or
tile) on the sky. This also defines the dimensions of the co-add products. The
uncertainty frames store 1-σ values for each pixel. These are expected to be
initiated upstream from a noise model specific to the detector and then propa-
gated and updated as the instrumental calibrations are applied. The uncertain-
ties are used for optional inverse-variance weighting of the input measurements,
and for computing co-add flux uncertainties. If bad-pixel masks are specified,
a bit-string template is used to select which conditions to flag against. The
corresponding pixels in the science frames are then omitted from co-addition.

The first (optional) step is to scale the frame pixel values to a common
photometric zero-point using calibration zero-point information in each FITS
header. Currently, the software reads a zero-point in magnitudes stored in the
“MAGZP” keyword. The common (or target) zero point is then written to the
FITS headers of the co-add products to enable the calibration of photometric
measurements. Frame overlap (or background-level) matching and outlier de-
tection is then performed. These are described in § 3. Since these initial steps
modify the input frame and mask pixel values, local copies of the frames and
masks are made to avoid overwriting the originals. After outliers have been
flagged in the input masks, the frames are ready for co-addition. All “good”



A WISE Astronomical Image Co-adder 3

(unmasked) pixels are reprojected and interpolated onto an upsampled output
grid. Details are described in § 4. The reprojection uses a fast input-to-output
plane coordinate transformation that implicitly corrects for focal plane distor-
tion if represented in the input FITS headers. The Simple Imaging Polynomial
(SIP) convention for distortion is assumed (Shupe et al. 2005).

The outputs from AWAIC are the main intensity image, a depth-of-coverage
map, a 1-σ uncertainty image based on input priors, an image of the outlier
locations, and optionally if the overlap-area interpolation method was used, an
image of the data-derived uncertainty computed from the standard deviation in
each interpolated pixel stack and appropriately scaled by the depth-of-coverage.
AWAIC also produces a wealth of Quality Assurance (QA) metrics and plots
over pre-specified regions of the co-add footprint. These include background
noise estimates, coverage and outlier statistics, and metrics to validate co-add
flux uncertainties using χ2 tests.

3. Preparatory Steps

3.1. Background Matching

Frame exposures taken at different times usually show variations in background
levels due to, for example, instrumental transients, changing environments, scat-
tered and stray light. The goal is to obtain seamless (and/or smooth) transitions
between frames near their overlap regions prior to co-addition. We will want to
equalize background levels from frame to frame, but at the same time preserve
natural background variations and structures as much as possible. We have
implemented the following simple method:

1. Fit a robust plane to each frame. By “robust”, we mean immune to the
presence of bright sources and extended structure. Our goal is to cap-
ture the global underlying background level in a frame. There are of
course cases where structure may span over most of a frame, and hence
the background will be over-represented. The planar fit is parameterized
by z = f(x, y), where z is the background level, and x, y are frame-pixel
coordinates.

2. The robust planar fits are subtracted from each respective frame. This
effectively flattens the frames and places them on a zero-baseline.

3. Compute either: (i) the global median M of all frame pixels contributing
to the co-add footprint, or, (ii) a median plane from all the planar fits.
The latter attempts to capture any natural background gradient over the
co-add footprint.

4. Add this global median M (a constant) to each of the “zero-level” frames
(from 2), or, in the case of a median plane, extend it over the co-add
region and then add it self-consistently to each input frame. The frames
have now been matched to a common background level (or gradient). This
will be more or less representative of the natural background over the co-
add footprint region.

This method ensures continuity of the background across the footprint re-
gion after co-addition. This not only improves a co-add’s esthetic appearance (by
minimizing frame level offsets between overlaps), but also makes it self-consistent
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for scientific purposes. It’s important to note that instrumental transients or
improper instrumental calibration (e.g., bad flat-fielding) can also manifest as
gradients across frames. Therefore, one needs to be sure that any retained global
gradient is purely astrophysical.

The above also includes a method to ameliorate biases from the possible
presence of bright extended structure. Presence of extended structure (e.g., a
galaxy) over a frame is first searched for by thresholding on the ratio of quantile
differences in the pixel distribution, e.g., Qd = [q0.84 − q0.5]/[q0.5 − q0.16]. Values
of Qd ∼> 2 usually indicate a highly skewed distribution and hence contamination
from bright extended structure. If detected, a frame is partitioned into a grid
and only those regions with the lowest median background value are used to
perform the robust planar fitting. This method still has its limitations, but it
extends the robustness of the algorithm.

3.2. Outlier Detection and Masking

The goal of outlier detection is to identify frame pixel measurements of the same
location on the sky which appear inconsistent with the (bulk) remainder of the
sample at that location. This assumes multiple frame exposures of the same
region of sky are available. Potential outliers include cosmic rays, latents (im-
age persistence), instrumental artifacts (including bad pixels), poorly registered
frames from gross pointing errors, supernovae, asteroids, and basically anything
that has moved or varied appreciably with respect to the inertial sky over the
observation span of a set of overlapping frames.

In summary, the method involves first projecting and interpolating each
input frame onto a common grid with user-specified pixel scale optimized for
the detector’s Point Spread Function (PSF) size. The interpolation is performed
using the overlap-area weighting method (analogous to using a top hat kernel).
This accentuates and localizes the outliers for optimal detection (e.g., cosmic
ray spikes). When all frames have been interpolated, robust estimates of the
first and second moments are computed for each interpolated pixel stack j. We
adopt the sample median (med), and the Median Absolute Deviation (MAD) as
a proxy for the dispersion:

σj = 1.4826 med {|pi − med{pi}|} , (1)

where pi is the value of the ith interpolated pixel within stack j. The factor of
1.4826 is the correction necessary for consistency with the standard deviation of
a Normal distribution in the large sample limit. The MAD estimator is relatively
immune to the presence of outliers where it exhibits a breakdown point of 50%,
i.e., more than half the measurements in a sample will need to be declared
outliers before the MAD gives an arbitrarily large error.

The final step involves re-projecting and re-interpolating each input pixel
again, but now testing each for outlier status against other values in its stack
using the pre-computed robust metrics. A pixel with value pi is declared an
outlier if for given “upper” (uthres) and “lower” (lthres) tail thresholds, either of
the following is satisfied:

pi > med{pi} + uthresσj (2)

pi < med{pi} − lthresσj
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Figure 2. One-dimensional schematic of stacking method for detecting out-
liers for well sampled (left) and under-sampled (right) cases. The input pixel
marked “×” contains signal from a source and is in danger of being flagged
when outlier detection is performed at location j in the output grid.

If declared an outlier, a bit is set in the accompanying frame mask for use
downstream. The algorithm also includes an adaptive thresholding method in
that if a pixel is likely to contain “real” signal (e.g., from a source), the upper
threshold is automatically inflated by a specified amount to avoid (or reduce the
incidence of) outlier flagging at that location. To distinguish between what’s
real or not, we generate a background subtracted median-SNR co-add using all
the input pixels. The background and local noise are computed using spatial
median filtering and quantile differencing: σ ≃ q0.5−q0.16 respectively. The idea
here is that since these metrics are relatively outlier resistant, a large median
pixel value in the co-add (or SNR derived therefrom) is likely to contain signal
associated with a source. Therefore, when flagging outliers using Eq. 2, we also
threshold on the SNR co-add to determine if uthres should be inflated.

We require typically at least five samples (overlapping pixels) in a stack for
the above method to be reliable. This is because the MAD measure for σ, even
though robust, can itself be noisy when the sample size is small. Simulations
show that for the MAD to achieve the same accuracy as the most optimal esti-
mator of σ for a normal distribution (i.e., the sample standard deviation), the
sample size needs be ≃ 2.74× larger. A noisy σ will adversely affect the ability
to perform reliable outlier detection. Another requirement to ensure good reli-
ability is to have good sampling of the instrumental PSF, i.e., at the Nyquist
rate or better. When well sampled, more detector pixels in a stack can be made
to align within the span of the PSF, and any pixel variations due to PSF shape
are minimized. On the other hand, a PSF which is grossly under-sampled can
artificially increase the scatter in a stack, with the consequence of erroneously
flagging pixels containing true source signal. Figure 2 illustrates these concepts.
The WISE detectors are all slightly better than critically sampled. Simulations
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have shown that for depths-of-coverage of eight or more, (where eight is the
median depth for WISE when scanning across the ecliptic), we expect to detect
outliers to completeness and reliability levels of ∼> 80% for a nominal threshold
of ∼ 5σ.

4. Co-addition using PRF Interpolation

One of the interpolation methods in AWAIC involves using the detector’s Point
Response Function (PRF) as the interpolation kernel. The PRF is simply the
instrumental PSF convolved with the pixel response. When knowledge of the
intra-pixel responsivity is absent, the pixel response is assumed to be uniform,
i.e., a top hat. The PRF is what one usually measures off an image using the
profiles of point sources. Each pixel can be thought as collecting light from its
vicinity with an efficiency described by the PRF.

The PRF can be used to estimate the flux at any point in space as follows.
In general, the flux in an output pixel j is estimated by combining the input
detector pixel measurements Di using PRF-weighted averaging:

fj =

∑

i (rij/σ2
i )Di

∑

i rij/σ2
i

, (3)

where rij is the value of the PRF from input pixel i at the location of output
pixel j. The rij are volume normalized to unity, i.e., for each i,

∑

j rij = 1. This

will ensure flux is conserved. The inverse-variance weights (1/σ2
i ) are optional

and default to 1. The σi can be fed into AWAIC as 1-σ uncertainty frames, e.g.,
as propagated from a prior noise model. The sums in Eq. 3 are over all input
pixels in all input frames. With multiple overlapping input frames, this will
result in a co-add. The 1-σ uncertainty in the co-add pixel flux fj , as derived
from Eq. 3 is given by

σj =

[
∑

i

w2

ij σ2

i

]1/2

, (4)

where wij = (rij/σ2
i )/

∑

i rij/σ2
i . Equation 4 assumes the measurement errors (in

the Di) are uncorrelated. Note that this represents the co-add flux uncertainty
based on priors. With Nf overlapping input frames and assuming σi = constant
throughout, it’s not difficult to show that Eq. 4 scales as: σj ≃ σi/

√
NfPj ,

where Pj = 1/
∑

i r
2
ij is a characteristic of the detector’s PRF, usually referred

to as the effective number of “noise pixels”. This scaling also assumes that the
PRF is isoplanatic (has fixed shape over the focal plane) so that Pj = constant.
Furthermore, the depth-of-coverage at co-add pixel j is given by the sum of all
overlapping PRF contributions at that location: Nj =

∑

i rij . This effectively
indicates how many times a point on the sky was visited by the PRF of a “good”
detector pixel i, i.e., not rejected due to prior-masking. If no input pixels were
masked, this reduces to the number of frame overlaps, Nf .

In general, the PRF is usually non-isoplanatic, especially for large detector
arrays. AWAIC allows for a list of spatially varying PRFs to be specified, where
each PRF corresponds to some pre-determined region (e.g., a partition of a
square grid) on the detector focal plane.
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Figure 3. Schematic of PRF interpolation for a single input pixel.

Equation 3 can be compared to the popular pixel overlap-area weighting
method, e.g., as implemented in the Montage1 tool. In fact if the PSF is grossly
under-sampled, then the PRF is effectively a top hat spanning one detector pixel.
The interpolation as described above then reduces to overlap-area weighted av-
eraging where the interpolation weights rij become the input(i)-to-output(j)
pixel overlap areas aij . Incidentally, AWAIC also implements the overlap-area
weighting method, in case detector PRFs are not available.

Figure 3 shows a schematic of a detector PRF mapped onto the co-add
output grid. The PRF boundary is shown as the dashed circle and is centered on
the detector pixel. To ensure accurate mapping of PRF pixels and interpolation
onto the co-add grid, a finer cell-grid composed of “pixel cells” is set up internally.
The cell size can be selected according to the accuracy to which the PRF can be
positioned. The PRF is subject to thermal fluctuations in the optical system as
well as pointing errors if multiple frames are being combined. Therefore, it does
not make sense to have a cell-grid finer than the measured positional accuracy of
the PRF. The PRF pixels are mapped onto the cell-grid frame by first projecting
the center of the detector pixel with distortion correction if necessary, and then
using a local transformation with rotation to determine the positions of the PRF
pixels in the cell-grid. The value of a PRF-weighted detector pixel flux rijDi in
a co-add cell pixel j is then computed using either a nearest-neighbor match,
or, the overlap-area weighting method. The latter is more accurate but slower.
After all the input pixels with their PRFs have been mapped, the internal co-add
cells are down-sampled to the desired output co-add pixel sizes.

There are three advantages to using the PRF as an interpolation kernel.
First, it reduces the impact of masked (missing) input pixels if the data are well
sampled, even close to Nyquist. This is because the PRF tails of neighboring

1http://montage.ipac.caltech.edu/
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“good” pixels can overlap and stretch into the bad pixel locations to effectively
give a non-zero coverage and signal there in the co-add. Second, Eqs 3 and 4 can
be used to define a linear matched filter optimized for point source detection.
This effectively represents a cross-covariance of a point source template (the
PRF) with the input data. It leads to smoothing of the high-frequency noise
without affecting the point source signal sought. In other words, the SNR per
pixel in the co-add is maximized for detecting point source peaks. The inclusion
of inverse-variance weighting further ensures that the SNR is maximized since
it implies the co-add fluxes will be maximum likelihood estimates for normally
distributed data. The creation of co-adds which are also optimized for source-
detection will benefit projects (e.g., WISE) where a source catalog is also a
release product. The third advantage is that the PRF allows for resolution
enhancement by “deconvolving” its effects from the input data.

Use of the PRF as an interpolation kernel also has its pitfalls, at least for the
process of co-add generation. The operation defined by Eq. 3 leads to a “smooth-
ing” of the input data in the co-add grid. This smoothing is minimized for a
top-hat PRF spanning one detector pixel (equivalent to overlap-area weighting).
This leads to smearing of the input pixel signals and one consequence is that
cosmic rays can masquerade as point sources (albeit with narrower width) if not
properly masked. For point sources with Gaussian profiles, their effective width
will increase by a factor of ≃

√
2. Furthermore, a broad kernel will cause the

noise to be spatially correlated in the co-add, typically on scales (correlation
lengths) approaching the PRF size. Correlations are minimized for top-hat ker-
nels. Both the effects of flux smearing and correlated noise must be accounted
for in photometric measurements off the co-add, both in profile fitting and aper-
ture photometry. The compensation for flux smearing can be handled through
an appropriate aperture correction. Ignorance of correlated noise will cause pho-
tometric uncertainties to be underestimated. Methods on how to account for
correlated noise in photometry will be discussed in a future paper.

5. Extension to Resolution Enhancement

We now describe a generic framework for co-addition with optional resolution
enhancement (HiRes). Above we referred to the concept of combining frames
to create a co-add. The HiRes problem asks the reverse: what model or rep-
resentation of the sky propagates through the measurement process to yield
the observations within measurement error? As a reminder, the measurement
process is a filtering operation performed by the instrument’s PRF:

sky (truth) ⊗ PSF ⊗ ⊓
︸ ︷︷ ︸

PRF

⊗ sampling → measurements. (5)

Our goal is to infer a plausible model of the sky or “truth” given the instrumental
effects.

5.1. The Maximum Correlation Method

The HiRes algorithm in AWAIC is based on the Maximum Correlation Method
(MCM). This was originally implemented to boost the scientific return of data
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from IRAS approximately 20 years ago (Aumann et al. 1990; Fowler & Au-
mann 1994), and is still provided as an online service to users. We have now
implemented MCM in a form which is suitable for use on any imaging data that
are compatible with the FITS and WCS standards, and the SIP convention for
distortion. The versatility of MCM is that it implicitly generates, as its very
first step (or first iteration), a PRF-interpolated co-add as described above. The
algorithm is as follows.

1. First we begin with a flat model image of ones, i.e., a “maximally corre-
lated” image:

fn=0

j = 1 ∀ j, (6)

where the subscript j refers to a pixel in the upsampled output grid, and
n refers to the iteration number. This starting image is a first guess at the
“truth” that we plan to reconstruct. Obviously this is a bad approxima-
tion, since it represents what we know without any measurements having
been used yet. We could instead have used prior information as the start-
ing model if it was available.

2. Next, we use the detector PRF(s) to “observe” this model image, or predict
the input detector measurements. Starting with n = 1, the predicted flux
in each detector pixel i is obtained by a “convolution”:

Fn
i =

∑

j

rijf
n−1

j , (7)

where rij is the response (PRF value) of pixel i at the location of output
model pixel j. Eq. 7 is a tensor inner product of the model image with the
flipped PRF (see below for why we need to flip the PRF). It may not be
a true convolution since the kernel rij may be non-isoplanatic.

3. Correction factors are computed for each detector pixel i by dividing their
measured flux, Di, by those predicted from the model (Eq. 7):

Kn
i =

Di

Fn
i

. (8)

4. For each model pixel j, all “contributing” correction factors, i.e., con-
tributed by the overlapping PRFs of all neighboring detector pixels i are
averaged using response-weighted averaging (with optional 1/σ2

i weight-
ing):

Cn
j =

∑

i (rij/σ2
i )K

n
i

∑

i rij/σ2
i

, (9)

5. Finally, the model image pixels are multiplied by their respective averaged
correction factors (Eq. 9) to obtain new refined estimates of the model
fluxes:

fn
j = fn−1

j Cn
j . (10)

If we are after a simple PRF-interpolated co-add, we terminate the process
at step 5. In fact, Eq. 9 is analogous to the co-addition equation (Eq. 3) in
that a starting model image with f0

j = 1 implies a correction factor K1
i ≡ Di

since a PRF volume-normalized to unity predicts F 1
i = 1 (Eq. 7). Therefore
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after the first (n = 1) iteration of MCM, co-add fluxes will automatically result:
f1

j = f0
j C1

j = fj .
If we desire resolution enhancement, the above process is iterated, where the

model image from step 5 is used to re-predict the measurements in step 2. This
process of iteratively refining the model continues until the model reproduces the
measurements to within the noise, i.e., the predictions from Eq. 7 are consistent
with the measurements Di. If input prior uncertainties (σi) are available, this
convergence can be formally checked using a global χ2 test that uses all the
input detector pixels:

χ2

n =
N∑

i=1

(Di − Fn
i )2

σ2
i

, (11)

where we expect χ2
n ≃ N (the number of degrees of freedom, = the number

of input pixels). Alternatively, convergence can also be checked by examining
the correction factors for each detector pixel (Eq. 8), where we expect Kn

i ≃ 1
within the noise, or, via the averaged correction factors (Eq. 10), where Cn

j → 1
after many iterations. An image of the latter can be generated by the software
at each iteration. Iterating much further beyond the initial signs of convergence
has the potential of introducing unnecessary (and usually unaesthetic) detail in
the model. This is important to ensure a parsimonious HiRes solution.

Therefore, it is an algorithmic property of MCM that it only modifies (or
de-correlates) a flat starting model image to the extent necessary to make it
reproduce the measurements within the noise. A PRF-interpolated co-add (from
the first MCM iteration) will generally not satisfy the measurements after it is
“convolved” with the detector PRFs, i.e., when subject to the measurement
process (Eq. 5).

As a detail, the input PRFs are first flipped in x and y (or equivalently
rotated by 180◦) when HiRes’ing is performed (n > 1). This is to conform
to the usual rules of convolution and assumes the input PRFs were made by
combining images of point sources observed with the same detector in the same
native x-y pixel frame. For PRF-interpolated co-adds however (that terminate
at n = 1), the PRFs are not flipped since a cross-covariance with the input
data is instead needed. The PRFs here are used as matched filters to generate
products optimized for point source detection (see § 4.).

It is also worth noting that MCM reduces to the classic Richardson-Lucy
(RL) method if the following are assumed: (i) the PRF is isoplanatic so that a
constant kernel allows for Fourier-based deconvolution methods to be used; (ii)
the inverse-variance weighting of measurement correction factors is disabled from
the PRF-weighted averaging (Eq. 9), or equivalently if all the input variances
σ2

i are assumed equal. This implies the solution will converge to the maximum
likelihood estimate for data that are Poisson distributed. With inverse-variance
weighting included, the solution converges to the maximum likelihood estimate
for Gaussian distributed data. This is usually always satisfied for astronomical
image data in the limit of high photon counts; (iii) there is no explicit testing for
global convergence at each iteration by checking, for example, that the solution
reproduces the data within measurement error (Eqs 7 and 11). This criterion
was indeed suggested by Lucy (1974), although it is seldom used in modern
implementations of the RL method.
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In the absence of prior information for the starting model, MCM implicitly
gives a solution which is the “smoothest” possible, i.e., has maximal entropy.
This should be compared to maximum entropy methods (e.g., Cornwell & Evans
1985) which attempt to minimize the χ2 of the differences between the data and
the convolved model, with an additional constraint imposing smoothness of the
solution. MCM requires no explicit smoothness constraint. MCM can indeed use
a regularizing constraint in the form of non-flat starting model, (e.g., an image
of the sky from another detector or wavelength), but this jettisons the idea of an
image with maximally correlated pixels, and the refined model image will not
be the smoothest possible. Smoothness is important because it can be used to
convey fidelity in a model. In general, the solution to a deconvolution problem is
not unique, especially in the presence of noise. Many models can be made to fit
the data, and many methods invoke regularization techniques in order to select
a plausible solution. A consequence is that some methods give more structure
or detail than necessary to satisfy the data, and there is no guarantee that this
structure is genuine. MCM adopts the Occam’s razor approach. Given no prior
constraints (apart from satisfying the input data), MCM will always converge
on the simplest solution. This will be the smoothest possible.

5.2. The CFV Diagnostic

A powerful diagnostic from MCM is the Correction Factor Variance (CFV).
This represents the variance about the PRF-weighted average correction factor
(Eq. 9) at a location in the output grid for iteration n: V n

j = 〈K2
i 〉j − 〈Ki〉2j , or

V n
j =

∑

i

wij [K
n
i ]2 −

[
∑

i

wijK
n
i

]2

, (12)

where wij = (rij/σ2
i )/

∑

i rij/σ2
i , and the detector-pixel correction factors Kn

i
were defined in Eq. 8. At early iterations, the CFV is generally high everywhere
because spatial structure has not yet been resolved, and the model contradicts
the measurements when subject to the measurement process. If after conver-
gence, all the detector-pixel measurements contributing a non-zero response at
some location j agreed exactly with their predicted fluxes (Eq. 7), then all the
Kn

i would be ≈ 1 and the CFV (V n
j ) at that location would be zero. Areas

with a relatively large CFV indicate the presence of input pixel measurements
which do not agree with the majority of the other measurements (e.g., outliers).
It could also indicate noisy data, saturated data, regions where the PRF is not
a good match (e.g., erroneously broad), or that a field has not yet converged
and would benefit from further iteration. By thresholding the CFV, one can
therefore create a mask for a HiRes image to assist in photometry, e.g., to avoid
outliers and unreliable detections from amplified noise fluctuations (see below).

Example CFVs for the M51 galaxy are shown in Figure 6. The correspond-
ing co-add and HiRes’d images appear in Figure 5. To illustrate the above
concepts, outlying input measurements were not masked in the left and middle
images of Figure 6. These refer to iteration levels n = 1 and n = 40 respec-
tively, with the latter corresponding to convergence. The CFV image on the far
right was created from data with outliers detected and masked a priori using
the algorithm described in § 3.2.
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Apart from providing a qualitative diagnostic, the CFV can also be used
to compute a posteriori (data-derived) uncertainties in the pixel fluxes fn

j in a
HiRes image. In general, the 1-σ uncertainty at iteration n can be written in
terms of the CFV as:

σn
j = cnfn

j

√

V n
j /

∑

i

rij , (13)

where the sum is over the responses from all measurements i at output pixel
j, i.e., the effective depth-of-coverage. cn is a correction factor to account for
re-distribution of noise power across spatial frequencies from one iteration to
the next. At low iterations, power is relatively high at low frequencies, i.e., the
noise is correlated across pixels. As iterations increase, noise is de-correlated
and power migrates to high frequencies. The spectrum approaches that of white
noise, provided the input measurement noise was spectrally white. For n = 1
(giving a co-add), c1 ≡ 1/

√
Pj , where Pj is the effective number of noise pixels

defined in § 4. With c1 written this way, Eq. 13 becomes equivalent to the co-add
pixel uncertainty defined in Eq. 4. In general, the cn at any iteration n ≥ 1 can
be approximated from the output image products as:

cn ≃
σRMS [fn

j ]

〈σn
j [cn = 1]〉 , (14)

where σRMS is the standard-deviation (or some robust equivalent) of the pixel
noise fluctuations within a “source-free” stationary background region with
≈uniform depth-of-coverage in the fn

j image. The denominator is the mean
(or median) of Eq. 13 with cn = 1 in the same region. At the time of writing,
AWAIC only computes an image of σn

j [cn = 1], since it can be quite subjective
on how the source-free stationary background is chosen. If such doesn’t exist,
background fitting may be required with σRMS computed from the fit residuals.
The user can then rescale the σn

j [cn = 1] image using the estimate of cn from
Eq. 14. This will give pixel uncertainties which are more or less statistically
compatible with noise fluctuations in the HiRes’d image. Pixel SNRs will also
be the maximum possible since MCM would have converged to the maximum
likelihood estimate for data that were Gaussian distributed. With the correct
value of cn, a user then has an estimate of the flux uncertainty anywhere in the
HiRes’d image, including at the location of sources. This will allow one to esti-
mate uncertainties in source photometry. Noise correlations are also expected to
be minimal in a converged HiRes image, or negligible if products were created
with ringing suppression turned on (see below).

5.3. Ringing Suppression

Like most deconvolution methods, MCM can lead to ringing artifacts in the
model image. This limits super-resolution, i.e., when attempting to go well
beyond the diffraction limit of an imaging system. In general, ringing occurs
because the reconstruction process tries to make the model image agree with
the “true” scene with access to only the low spatial frequency components com-
prising the data. The input data are usually band-limited, and information
beyond some high spatial frequency cutoff can never be recovered. The best we
can ever reconstruct is a “low-pass filtered” version of the truth, with the filter
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Figure 4. Ringing suppression algorithm.

determined by the maximum spatial frequency the observations provide. This
includes the finite sampling by pixels. A hard high frequency cutoff will lead to
sinc-like oscillations in real image space. The magnitude of the ringing depends
on the strength of a source relative to the local background intensity level.

It is no accident that a solution with ringing is the smoothest (and sim-
plest) solution possible with MCM. Anything smoother (with more low frequency
power) will not satisfy the measurements when subject to the measurement pro-
cess (Eq. 5). However, since a large number of less-smooth solutions can re-
produce the observations, those without ringing are generally more desirable.
Therefore, we relax our request for the smoothest image and use prior knowl-
edge that the background and (desired) source fluxes are physically distinct and
separable. There have been numerous approaches that have used this philosophy
(e.g., Lucy 1994). In brief, the ringing suppression algorithm in AWAIC first
generates an image of the slowly varying background for each input frame on
some specific scale using median filtering; this is subtracted from the respective
input frames to create the “source” images; negative noise fluctuations are set
to zero, and a tiny positive offset added; MCM is then run on the background-
subtracted images until convergence; the background images are combined and
then added to the HiRes’d source-image product. This operation enforces a
positivity constraint for reconstruction of the source signals. It ensures that
source flux won’t ring against an essentially zero background level so power can
be forced into high spatial frequencies. After the background has been added
to the HiRes’d source-only product, MCM is re-executed for several iterations
using this as the starting model image and the original frames as input. This
step re-adjusts the solution and attempts to restore the intrinsic noise properties
of the HiRes process, i.e., what one would have obtained if no background were
removed or positivity constraint enforced. It ensures that photometric uncer-
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Figure 5. M51 from Spitzer-MIPS 24µm. Left: co-add (after 1 iteration);
Middle: HiRes after 10 iterations; Right: HiRes after 40 iterations.

tainties don’t become biased and the final solution adequately reproduces the
measurements within the noise. Figure 4 gives an overview of the above steps.

5.4. HiRes in Practice

Like most deconvolution methods, MCM does not alter the information content
of the input image data. The signal and noise at a given frequency are scaled
approximately together, keeping the SNR fixed. The process just re-emphasizes
different parts of the frequency spectrum to make images more amenable to a
certain kind of examination, e.g., for detecting previously unresolved objects
and thereby increasing the completeness of surveys.

For optimal HiRes’ing, the input data will have to adequately sample the
instrumental PSF to at least better than the Nyquist sampling frequency 2νc,
where νc is the maximum frequency cutoff inherent in the PSF. For a simple
diffraction-limited system with aperture diameter D, νc ∝ D/λ and corresponds
to the full width at half maximum (FWHM) of an Airy beam. Even if the
detector pixels undersample the PSF (below Nyquist), redundant coverage with
N randomly dithered frames can help recover the high spatial frequencies, since
the average sampling will scale as ≈ 1/N of an input pixel. The better the
sampling, the better the HiRes algorithm is at improving spatial resolution.
For imaging data from the Spitzer IRAC and MIPS detectors with typically
SNR∼> 5/pixel and 10 frame overlaps, our HiRes algorithm reduces the FWHM
of the effective PRF to ≃ 0.35λ/D - a factor of almost 3 below the diffraction
limit. This corresponds to almost an order of magnitude increase in flux per solid
angle for a Gaussian profile. This enhancement assumes accurate knowledge of
the PRF over the focal plane.

An example output from AWAIC at three MCM iteration levels is shown in
Figure 5. At high iterations, point source ringing starts to appear. The ringing
around the satellite dwarf galaxy at the bottom is aggravated because the core
is saturated in the data, and the PRF used for HiRes’ing (which is derived from
unsaturated data) is not a good match. “Flat” core profiles in the data, due
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Figure 6. Correction Factor Variance (CFV) images for M51 whose inten-
sity images were shown in Fig. 5. For a description of the CFV, see § 5.2.
Left: CFV after 1 iteration with outlying measurements purposefully retained;
Middle: CFV after 40 iterations with outlying measurements also purposefully
retained; Right: CFV after 40 iterations but with outliers masked (omitted)
prior to HiRes’ing. Darkest regions correspond to lowest values of the CFV
(Vj ∼< 0.1), and the brightest to highest values (Vj ∼> 100).

to either saturation or improperly corrected non-linearity, will contain relatively
more power in the side-lobes than the actual PRF. When this PRF is used for
HiRes’ing, these side-lobes will manifest as ringing artifacts in the HiRes image
in order for it to reproduce the observations on “convolution” with the PRF.
Even though the ringing suppression algorithm was turned on in this example,
ringing is still seen around other point sources. This is because these sources
are superimposed on the extended structure of the galaxy. This structure acts
like an elevated background against which point sources can ring. The ringing
suppression algorithm relies on accurate estimation of the local background, and
this can be difficult when complex structure is involved, as it is here.

6. Summary and Future Work

We have given a broad overview of the algorithms implemented in a new generic
co-addition/HiRes’ing tool. The goal is to produce high fidelity science qual-
ity products with uncertainty estimates and metrics for validation thereof. The
HiRes (MCM) algorithm contains considerable improvement over previous meth-
ods in that it includes a posteriori uncertainty estimation, statistically motivated
convergence criteria, a powerful diagnostic (the CFV) to locate inconsistencies
in the input data and assess the overall quality of HiRes solutions, and the abil-
ity to handle non-isoplanatic PRFs. Algorithms will be discussed in more detail
in future papers. Future work will explore methods to accelerate convergence
in MCM, the ability to handle time-dependent PRFs (e.g., adapted to variable
seeing), and an analysis of the completeness, reliability, and photometric accu-
racy of sources detected in HiRes’d images, especially in confused fields. More
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examples, analyses, user-interface details, and animations of MCM can be found
at http://web.ipac.caltech.edu/staff/fmasci/home/wise/awaic.html
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