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What Is WISE?

• A NASA Medium Explorer (MIDEX) Mission
• P.I. - Ned Wright (UCLA)
• Scheduled for launch in November 2009

• The Wide-field  Infrared Survey Explorer (WISE):
– Perform an all-sky survey at 3.3, 4.7, 12 & 23 µm with up to 3 orders of magnitude more

sensitivity than previous surveys
– A cold 40 cm telescope in a sun-synchronous low-Earth orbit
– Image quality ≈ 6″ FWHM at wavelengths 3.3 - 12 µm; ≈ 12″ at 23 µm
– 1024 × 1024 pixel infrared detector arrays, at 2.75″/pixel
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• 523 km, circular, polar sun-
synchronous orbit

– One month of checkout
– 6 months of survey ops

• One simple observing mode
- half-orbit scans

•  Scan mirror “freezes” orbital motion ⇒ efficient mapping
- 8.8-s exposure per frame
- 10% frame to frame overlap (in-scan)
- 90% orbit to orbit overlap (cross-scan)

•  Expect to achieve a median of  8 exposures/position on the
ecliptic equator, > 1000 exposures at poles

•  Requirement is to have >95% of sky with ≥4 exposures

•  Uplinks, downlinks and calibrations occur at poles

Simple Mission Design

1 frame 1 orbit 2 orbits Many orbits
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Science Goals

• Find the most luminous galaxies in the Universe
• Find the closest stars to the Sun
• Detect most main belt asteroids larger than ~3km
• Extend the 2MASS Survey into the thermal (mid) infrared
• Provide the essential catalog for the James Webb Space Telescope (JWST)

z = 3
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IRAS versus WISE

•  20 years ago, IRAS gave
us this view of the galactic
center

•  Still our best view of the
whole sky in the mid-IR

•  Same region as expected
from WISE. This is a
MSX-2MASS composite



6

WISE Products

WISE will deliver to the scientific community:

• A digital Image Atlas containing ~220,000 calibrated images, or co-adds of the
survey frame exposures covering the whole sky in 4 mid-IR bands

• Ancillary co-add products: depth-of-coverage maps (from all good pixels) and
uncertainty maps

• Atlas Image tiles are ≈ 1.5° × 1.5° re-sampled at 1.375″/pixel

• A Source Catalog of ≈ 5 × 108 objects merged across all 4 bands to photometric
S/N = 5. All sources will be astrometrically and photometrically calibrated

• All processing will occur at the WISE Science Data Center at IPAC
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This Presentation

• Describe image co-addition framework as implemented at the WISE Science Data Center,
including preparatory steps:

– outlier detection and masking
– background-level matching

• Describe algorithms implemented in AWAIC - A WISE Astronomical Image Co-adder
– Interpolation using the detector’s Point Response Function (PRF)
– How this compares to other interpolation methods

• Methods to assess statistical robustness of co-add fluxes (uncertainty estimation)

• Extension of AWAIC to resolution enhancement (HiRes):
– Describe the Maximum Correlation Method (MCM) for HiRes
– Associated diagnostics and uncertainties in HiRes’d products (received little attention in the past)
– HiRes is not in WISE automated pipeline. Implemented to support offline research
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Co-addition Pipeline Overview

INPUTS: (images in FITS format)
 - instrumentally/astrometrically calibrated image frames
 - bad-pixel masks
 - uncertainty (sigma) images from prior noise model

Interpolate frames onto a common grid;
use kernel optimized for outlier detection

Outlier detection on interp. pixel stacks
using robust statistics. Masks updated

Throughput matching (multiplicative) to scale input
frames to a common photometric zero-point

Co-addition of all unmasked pixels using AWAIC:
- fast re-projection and distortion correction
- interpolation: PRF weighted averaging with
  optional inverse variance weighting

OUTPUTS:
- main co-add intensity images
- depth-of-coverage maps
- uncertainty images
- all 4096 x 4096; ≤1.375″/pixel

Final Product Generator. Deliver
to public through IRSA at IPAC

Outlier detection & masking

Frame background-level matching (additive)

Quality Assurance: backgrounds, noise,
coverage/outlier stats, frame-stack χ2

stats for uncertainty verification
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Background-level Matching

• Instrumental transients lead to varying background levels between frames
• Goal: obtain seamless (or smooth) transitions between frames across overlaps but preserve

natural background variations as much as possible
• Simple method: fit a “robust” plane to each frame, subtract to equalize frames, then add back a

common plane or level to all frames computed from a median over all the fits

No matching With matching
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Outlier Detection

• Take advantage of the redundancy in multiple frame exposures and flag outlying measurements
• Project and interpolate frames onto a common grid, apply an outlier identification algorithm to pixel stacks:

• It helps to have good sampling of the PSF for method to be reliable! WISE bands: >~ critically sampled

j

Under-sampled PSF case≥ Critically sampled PSF case

j

Detector pixels
in single frame

Co-add
(interpolated)
pixel grid



! 

- flag in mask if :      pi > median pi{ } + tthres" j        or       pi < median pi{ }# bthres" j

- where " j  is a robust measure of spread, e.g., via percentiles :  " j $  0.5(p84 # p16) $  (p50 # p16)  
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Image Co-addition in AWAIC

• Goal: want to optimally combine all measurements into a faithful representation of the sky
given all the instrumental systematics, cosmic rays etc. “Optimality criterion” defined later

• AWAIC uses the detector’s Point Response Function (PRF) as the interpolation kernel
• PRF = Point Spread Function (PSF) ⊗ pixel response; response is usually a top hat

– represents the end-to-end transfer function from sky to measurement pixels
– each pixel collects light from its vicinity with an efficiency described by the PRF

• Flux in a co-add pixel j is estimated using PRF and inverse-variance weighted averaging:

• Some popular interpolation methods:
– Overlap-area weighted averaging: interpolation weights are pixel overlap areas rij = aij. PRF ≡ top hat
– Drizzle: extension of overlap-area that includes shrinkage of input pixels
– Tapered sync interpolation:  optimal for band-limited data sampled at or better than Nyquist. Missed

cosmic rays, noise spikes can mess up a large region and lead to severe ringing
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Variance from propagated noise model (optional)

PRF (volume normalized to unity)
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PRF Interpolation Schematic

Desired output co-add pixel. At end,
down-sample the internal cell grid

PRF domain of input detector pixel

Single detector pixel

Co-add (internal) cell pixel with flux fj

PRF pixel. Use nearest-neighbor or area-overlap
weighting to compute PRF value in co-add grid
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Why PRF as Interpolation Kernel?

Pros:
• Reduces impact of bad/masked pixels if the data are well sampled (even close to critical). Leads to effectively

non-zero coverage at the bad pixel locations on co-add due to the overlapping PRF tails of ‘good’ pixels:

• Defines a linear matched filter optimized for point source detection
– High frequency noise is smoothed out without affecting point source signals ⇒ peak S/N maximized
– Process is effectively a cross-correlation of a point source template (the PRF) with input data
– This will benefit processing at the WSDC since a source catalog is one of its release products
– Weighted average also ensures S/N is maximized ⇒ maximum likelihood estimator for ‘Normal’ data

• The big one: allows for resolution enhancement (HiRes): PRF can be “deconvolved” - more later

Cons:
• Noise is correlated on larger spatial scales in the co-add when a broad kernel is used
• Smoothing operation ⇒ “flux smearing”. Cosmic rays can masquerade as real sources if not masked
• Both these must be accounted for in photometry off co-adds: in flux and uncertainty estimation (e.g., PTO)

Σflux =
PRF interp
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Area Overlap vs PRF Interp.

area-overlap weighting
(top-hat interp kernel)

PRF-weighted averaging
(PRF interp kernel) ÷ =

⇒ PRF interpolation “smears” flux on small scales
⇒ photometry with small apertures must use appropriate aperture correction

±2%

A field in Taurus: Spitzer 24µm
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Other Features in AWAIC

• Allows for a spatially varying PRF. Usually non-isoplanatic over the focal plane for large detector arrays

• Uncertainties in co-add pixel fluxes
– Stored as 1-sigma values in separate image products
– Based on input priors: combines input measurement uncertainties propagated from a noise model

• Ancillary products: depth-of-coverage maps and images of outlier locations (some examples later)

• Quality Assurance: e.g., statistics on depth-of-coverage, sky-backgrounds, outliers. Metrics to check that co-
add uncertainties (based on priors) are statistically compatible with the input data:

– e.g., compare with a posteriori data-derived variances using χ2 :

• Supports FITS standard, WCS standards with distortion, and five commonly used projections (TAN, SIN,
ZEA, STG, ARC) implemented in a fast re-projection library

• Generic enough for use on non-WISE image data: e.g., exercised on Spitzer and HST data

Co-add pixel uncertainties propagated from noise model
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⇒  Applied spatially on uniform sky pixels in co-add, or
      on input image stacks to quantify systematics
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Example of WISE Atlas Images

•   Simulated frames provided by Ned Wright (P.I.): used seed sources from 2MASS catalog
•   Then co-added with AWAIC
•   Mid-ecliptic latitude field (β ≈ +30°) - example of what WISE may see

3.3 µm 23 µm
1.56°
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Depth-of-coverage and σ maps

•   Depth-of-coverage map: effective number of repeats from all unmasked pixels at each location
•   σ-map: 1-sigma uncertainty for each pixel propagated from a noise model

coverage

! 

" #
1

coverage

0.30.174 14.5
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 South Ecliptic Pole (near LMC)

~ 20′ ~ 1/5 of WISE Atlas Image

WISE “Touchstone field”
Combines AWAIC mosaics in
Spitzer bands:
4.5µm (blue)
8µm (green)
24µm (red)

⇒ Proxy for WISE bands 2, 3, 4
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HiRes: Maximum Correlation
Method (MCM)

• Originally implemented to operate on data from the InfraRed Astronomical Satellite (IRAS) ~ 20 years ago

• Earlier we discussed combining images to create a co-add, MCM asks the reverse:
– what model or representation of the sky propagates through the measurement process to yield the

observations within measurement error?

• Measurement process is a filtering operation performed by the instrument’s Point Response Function (PRF):

• MCM starts with a “maximally correlated” image - a flat model image and modifies (or de-correlates) it to
the extent necessary to make it reproduce the measurements to within the noise

– Instead of a flat model image, can also use prior information as starting model

• MCM implicitly gives a solution which is the “smoothest” possible, i.e., has maximal entropy
– c.f. to Maximum Entropy Methods: smoothness built in explicitly as a constraint in cost function

• In general, noisy data ⇒ solution to the deconvolution problem is not unique. Some methods give more
structure or detail than necessary to satisfy the data ⇒ no guarantee that structure is genuine

– with input data as only constraint, MCM gives the “simplest” solution -  the smoothest

  

! 

Sky " truth"   "    PSF "#
PRF

1 2 4 3 4    "    sampling   $    measurements
?
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MCM Process

Reconstructed “model” image

Observed point source profile
Initialize to flat: f0 = 1

measurement: Di

f1 = f0<C1> 
1

n = 0

2

3

f2 = f1<C2> 

f3 = f2<C3> 

4. refine model

1. predict obs

plain co-add

1. predict pixel obs i: Pn
i = PRF ⊗ fn-1

2. correction factors: Cn
i = Di / Pn

i

3. avg correction in output grid: <Cn>

4. refine model: fn = fn-1 <Cn>

5. iterate until Cn
i ~ 1: converged

re-predict
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MCM Details

• MCM reduces to the classic Richardson-Lucy method if:
– PRF is isoplanatic. Constant kernel ⇒ allows use of Fourier de-convolution methods
– Inverse variance weighting is disabled from the PRF-weighted averaging of input data
– Prediction (simulator) step to check for data consistency and terminate iterations is removed

• MCM does not alter information content of an image. Is reversible within measurement error
– Process re-emphasizes different parts of the frequency spectrum to allow detection of unresolved objects

• Includes a ringing suppression algorithm
– Ringing is common to all deconvolution methods and limits super-resolution
– Due to band-limited nature of input data, information beyond some high freq. cutoff cannot be recovered
– Method: separate background and “source” flux, run MCM on source images and recombine at end.

Enforces a positivity constraint - source flux won’t ring against a zero background

with ringing ringing suppressed
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Tycho’s Supernova Remnant

Spitzer-MIPS 24 µm

Co-add (1st MCM iteration) HiRes: 40 MCM iterations
depth-of-coverage map

5 65

FWHM of effective PRF: went from ~5.8″ (native) to ~1.9″

⇒  ×3 gain in resolution per axis
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Herbig-Haro 46-47

Spitzer-IRAC composite:

  3.6 µm, 4.5 µm, 8 µm

Co-add (1st MCM iteration) HiRes: 20 MCM iterations
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SF Region in Taurus

Spitzer-MIPS 24 µm from
Taurus-2 Legacy Program

HiRes: 40 iterationsCo-add (1st iteration)
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M51 or NGC 5194/95

“Whirlpool Galaxy”

Spitzer-MIPS 24 µm

Co-add (1st iteration) HiRes: 10 iterations HiRes: 40 iterations
profile saturated!
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M51 or NGC 5194/95

Spitzer-IRAC 5.8 µm
1st iteration Co-add from AWAIC HST composite - NOT from AWAIC
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CFV Diagnostic

• Correction Factor Variance (CFV) is an ancillary image product from MCM-HiRes algorithm

• Recall: correction factor for input pixel i at any MCM iteration:

• Variance in PRF-weighted avg correction factors from all input pixels at a location in output grid

• At early iterations, CFV is everywhere high ⇒ HiRes not yet converged
– After convergence (i.e., all Ci ~ 1), expect CFV ~ 0 everywhere: “spatial resolution error” minimized
– Any remaining high values of CVF ⇒ inconsistency of input measurements at that location, e.g., outliers

• Qualitative diagnostic to indicate (i) locations in HiRes image where measurements disagree,
and (ii) locations where input PRF is not a good match to the data

• Quantitative metric for computing an a posterior (data-derived) uncertainty for HiRes fluxes

! 

Ci =
measured flux

predicted flux :  PRF "  hires model

! 

CFV = C
i

2
" C

i

2
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M51: CFV and Outlier Map

CFV after 40 iterations Outlier location map from stacking method
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M51 movie - outliers retained

HiRes image CFV image
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Simulation: S/N Check in HiRes

#iterations:  1                            2                              6                             10                             30

What does HiRes do the image noise, and signal-to-noise ratio for source detection? Monte Carlo:

Simulate an ensemble of 10 images with Poisson noise
and a point source with well sampled PSF at the center

HiRes to N = 1, 2, 3… 30 iterations

Re-simulate another trial ensemble

After 100 independent trials
(ensembles), compute noise
statistics across ensembles for
each HiRes iteration
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Simulation: S/N in HiRes

 σ (stack RMS)

 Signal-to-Noise

 peak source signal

•   At low iterations, power at low frequency is relatively high, i.e., noise is correlated across pixels
•   With more iterations, power moves to high frequencies ⇒ de-correlation process at work
•   Noise power spectrum approaches that of the input data depending on PRF accuracy 
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Summary and Future Plans

• Described co-addition framework for WISE with extension to resolution enhancement
• Provides a generic tool for use on any image data that conforms with FITS/WCS standards
• Goal is to produce high-fidelity, science quality image products for accurate photometry with

quantifiable uncertainties

• Currently AWAIC is a suite of modules implemented in ANSI C and wrapped into a Perl script
– Runs under Linux in WISE processing environment
– Implement a platform independent version for portability to the community

• Explore methods for accelerating convergence in MCM (currently converges logarithmically)

• Extend to handle time dependent PSFs (e.g., adapted to seeing). This has applications for ground
based projects, e.g., LSST. PSF matching is important for time-domain studies

• Explore performance of MCM on confusion limited observations: how far below the native
confusion limit can we go and reliably detect sources?

• More thorough explanation of all algorithms can be found at:
       http://web.ipac.caltech.edu/staff/fmasci/home/wise/awaic.html
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Backup Slides



34

Atlas Image Tiling Geometry

Example of tiling pattern (or co-add image footprints) over an equatorial pole:

Tile overlaps:
    Purple ⇒1
    Blue ⇒ 2
    Green ⇒ 3
    Yellow ⇒ 4
    Red ⇒ 5
    White ⇒ 6 (on pole)

~15°
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Background-level Matching

• Instrumental and detector transients lead to varying background levels between frames
• Goal: obtain seamless (or smooth) transitions between frames across overlaps in a co-add
• Want to equalize background levels but preserve natural background variations if possible
• Make each Atlas Image co-add self-consistent for scientific purposes
• Later tie together and match levels in co-adds across sky if needed

Simple Method:
1. Fit a plane to each input frame that overlaps with co-add footprint to capture “global” level

– Fitting is done “robustly”, i.e., ~ immune to presence of bright sources and extended structure

2. Subtract robust planar fits from each respective frame ⇒ places frames on a zero baseline

3. Compute a global median (or modal) plane from all fits and extend over co-add footprint

4. Add this “common plane” to all the input frames

⇒  Ensures continuity of background across footprint region after co-addition
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Outlier Detection

• Performed a simulation containing known cosmic ray hits and noise to explore completeness and reliability
as a function of depth-of-coverage and outlier detection threshold

• For depths-of-coverage >~ 10, completeness and reliability are reasonable for a threshold of ~5σ

• Moving objects, e.g., asteroids and highly variable sources will be flagged as outliers in WISE co-adds
unless they’re moving (or varying) slowly across overlapping frames

           ⇒ co-adds will represent the “static” inertial sky

thres = 5σ

thres = 10σ

thres = 3σ
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Ringing Suppression Algorithm

Each frame: compute background using block median 
or mode filter over N x N grid w/ Gaussian smoothing

Input image frames

- subtract background frames from input frames
- reset all negative pixel values to zero
- add small positive offset δ ~ 10-20

  (⇒ positivity constraint with a “flux bias”)

Mosaic the background
frames

Using a flat model (starting) image, HiRes
bckgnd-sub to N iterations until convergence

Add background mosaic
to HiRes products

Using new HiRes as starting image and
original frames (w/ bckgnds), HiRes again
to 4-10 iterations to restore (de-bias) noise
structure and reproduce measurements

Output HiRes’d mosaic with ringing
suppressed. Residual ringing depends
on complexity of background
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Ringing Suppression
(Field in Taurus)

suppression off

suppression on
profile saturated
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M51 movie - outliers first rejected

HiRes image CFV image


