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1 Introduction 

 
1.1 Purpose and Scope 
 
We derive a model for the noise variance in observed (down-linked) value for an image pixel. This will 
be used in the WSDS instrumental calibration pipeline to initiate uncertainties. These will be propagated 
and updated downstream for every pixel, and stored in image frames to accompany the primary single-
frame products. These uncertainties will be used to assess expected versus actual detector noise, and as 
prior-weights to support frame co-addition, source detection and photometry. 
 
 
1.2 Applicable Documents 
 

• WISE Digital Electronics Box (DEB) processing description (SDL/06-070; Jan 2006): 
http://web.ipac.caltech.edu/staff/roc/wise/docs/sdl06-070-.pdf (NEWER VERSION KNOWN 
TO EXIST!) 

 
• WSDC Functional Requirements Document (WSDC-D-R001; version 2.0; Nov 2007): 

http://web.ipac.caltech.edu/staff/roc/wise/docs/WSDC_Functional_Requirements_all.pdf  
 

• Critical Design Review presentation: Instrumental Calibration (Jan 2008): 
http://spider.ipac.caltech.edu/staff/fmasci/home/wise/InstruCal_CDRJan08.pdf  

 
 
1.3 Acronyms 
 
ADC  Analog-to-Digital Conversion 
ADU  Analog Digital Unit 
COV  Covariance 
DEB  Digital Electronics Box 
DN  Data Number 
IPAC  Infrared Processing and Analysis Center 
LSB  Least Significant Bit 
RN  Read Noise 
SDL  Space Dynamics Lab 
SNR  Signal to Noise Ratio 
SUR  Sample-Up-the-Ramp 
VAR  Variance 
WISE  Wide-field Infrared Survey Explorer 
WSDC  WISE Science Data Center 
WSDS  WISE Science Data System 
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2 Error Model 

The observed (down-linked) value m for a pixel is computed on-board from a linear combination of 
Samples Up the Ramp (SUR) values yi in DN: 
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where nominally N = 8, ci are the SUR coefficients, e.g., {-4,-3,-2,-1,0,1,2,3,4}, O is an offset (as of 
11/24/08, O = 1024 for all bands), and T is the number of LSB truncations performed on the DEB output 
(as of 11/24/08, T = 3, 3, 2, 2 for bands 1, 2, 3, 4 respectively). 
 
The summation term (≡ m2T – O) should not be confused with a slope (rate) estimated from a standard 
linear least-squares fit to the digitized SUR data. This is because the nominal ci values are not normalized 
weights for a direct linear filtering/fitting operation. The quantity m2T – O and the true slope β (in DN / 
sample interval) are related as follows: 
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In general, the error εm for a measured quantity m, which is a function of random variables yi: m = f(yi), 
where i = 0, 1, 2…N, can be written by Taylor expanding about its expected value <m>: 
 

  

! 

"m = m # m

    $ y
0
# y

0( )
%m

%y
0

+ y
1
# y

1( )
%m

%y
1

+K+ yN # yN( )
%m

%yN

       +
1

2!
y

0
# y

0( )
2 % 2

m

%y
0

2
+ y

1
# y

1( )
2 % 2

m

%y
1

2
+ 2 y

0
# y

0( ) y1
# y

1( )
% 2
m

%y
0
%y

1

+K
& 

' 
( 

) 

* 
+ 

       +K+
1

n!
y

0
# y

0( )
%

%y
0

+ y
1
# y

1( )
%

%y
1

+K+ yN # yN( )
%

%yN

& 

' 
( 

) 

* 
+ 

n

m,

 

 
where the partial derivatives are evaluated at <y0>, <y1> … <yN>. This is written in this form so that all 
higher order terms that may potentially contribute can be seen. If m is a linear combination of the yi (e.g., 
Eq. 1), all derivatives 2nd order and above (n > 1) vanish. So the total error can be written: 
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The variance in m is given by the expectation value of the square of Eq. 3: σ2

m = <εm
2>. Squaring and 

expanding Eq.3, and taking expectation values, 
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Collecting terms, the variance can be written: 
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where cov(yi , yj) ≡ <εyiεyj> represents the covariance between any two ramp samples i, j (i ≠ j). The 
variance in Eq. 4 can be decomposed into two terms, one containing the uncorrelated noise contributions, 
and the other the correlated noise contributions, i.e., 
 

! 

"
m

2
= var(m) + cov(m)                                                                                          (Eq. 5)  

 
We consider each term in turn. 
 
Uncorrelated variance term: var(m) 
 
From Eq. 1 and the first summation term on the right in Eq. 4, 
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Assuming that Poisson (photon) noise and read-noise are the main contributors to the total noise variance 
σ2

yi in any ramp sample i, we have 
 

! 

" yi

2
=
#yi

g
+
"RN

2

g
2

,                                                                                                  (Eq. 7) 

 
where the first term on the right is the contribution from Poisson noise, i.e., Δyi is the total count in DN 
resulting from photoelectrons accumulated from t = 0 to sample t = i, i.e., Δyi = yi – y0 ; g is the gain in 
electrons/DN; and σRN is the detector read-noise in electrons per pixel per ramp sample. This ensures that 
sigma (= √σ2

yi) will have units of DN. Substituting Eq. 7 into 6, we have: 
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Now we use a crucial approximation to simplify Eq. 8. We assume that Δyi can be estimated from a linear 
rate β: 
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! 

"yi = yi # y0 $ %i,                                                                                                 (Eq. 9)  
 
where i = 0, 1, 2 … N, and y0 is the y-intercept of the ramp whose explicit value we don’t need. A non-
zero y0 may imply residual charge on an array following a reset. Using Eq. 9 in Eq. 1, it can be shown that 
β takes the same form as Eq. 2 – i.e., we approximate the count rate as the slope from a linear least-
squares fit, and this can be scaled from the observed value (m2T – O). Therefore, Eq. 9 can be written: 
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where KN was defined in Eq. 2. The reason why this is an approximation is because we have neglected 
non-linear behavior in the ramp. The change in observed DN (or collected photoelectrons) high up the 
ramp is expected to be smaller than that at the low end (i.e., the linear regime). A straight line fit will 
provide an average rate over the whole ramp. One can easily extend Eq. 10 to include non-linear terms, 
i.e., as calibrated from a non-linearity model, however, the curvature in a ramp as measured by its 
deviation from a linear fit is expected to be less than a few percent for the WISE arrays (from SDL 
characterization plan). The assumption in Eq. 10 should not significantly impact the Poisson-variance 
estimation. 
 
Substituting Eq. 10 into Eq. 8, we have the final expression for the uncorrelated (first) variance term in 
Eq. 5: 
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Correlated variance term: cov(m) 
 
We now simplify the second (double summation) term on the right in Eq. 4. This term only accounts for 
correlated noise between any two samples in the ramp. The correlations are primarily from photon-noise 
increments in the ramp. Very briefly, a photon-noise fluctuation early on in the ramp will be imprinted 
onto all subsequent samples because the count at any ramp sample is the cumulative signal up to that 
point. Therefore, the total error in a sample will depend on (or be correlated with) the error from photon-
noise in any sample lower down. 
 
This should be compared to the effect of read-noise. Read-noise comes into play when the total 
accumulated charge at a sample is “counted”. This is done in a non-destructive manner, where each pixel 
can be thought as a capacitor. As photons are detected, charge builds up on the capacitor. The counting 
(or read) process contributes an additional component of noise that is independent from one sample to the 
next. In other words, the value of the accumulated signal after a read is not propagated along to affect 
measurements higher-up on the ramp. It is merely stored. 
 
We are interested in deriving an expression for the covariance between errors in any two samples up the 
ramp, i.e., cov(yi , yj) in Eq. 4. The total error in two ramp samples i, j where j > i can be written: 
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where :

#"k = "k+1 %"k;   #"l = "l+1 %"l

 

 
are photon noise increments and εui , εuj are the uncorrelated noise components. We are interested in the 
expectation value of the product (covariance) between the total error in samples i and j: 
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The last three terms in Eq. 13 are zero since the εui , εuj components are not correlated with anything 
except themselves. The photon-noise increments are also independent and are only correlated with 
themselves, i.e., for instances when k = l. Assuming i < j, Eq. 13 reduces to: 
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where we have assumed that the variance in a signal increment in a SUR interval is dominated by Poisson 
noise and g is the gain in electrons/DN. Under this construction, cov(yi , yj) will have units of DN2. We 
have therefore shown that the covariance between any two ramp samples i, j (with i < j) depends only on 
the total count accumulated from t = 0 up to the sample that is lower on the ramp (i.e., here it’s sample i). 
 
Adopting the same formalism as above to approximate the accumulated count Δyi = yi – y0 in Eq. 14 using 
a linear count rate (i.e., Eq. 10), the second term on the right in Eq. 4 can be written:  
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where we used Eq. 1 to evaluate the partial derivatives. 
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In summary, the predicted variance in the actual observed (down-linked) value m for a pixel in a WISE 
array is given by combining Equations 5, 11 and 15: 
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where :

m,  O and T are defined in Eq. 1 and the text below it;

g =  gain in electrons/DN in any SUR;

ci with i 2 {0, 1, 2, 3KN} are the predetermined SUR coefficients;

N =  maximum number of samples$1. Nominally N = 8;

KN = ici
i= 0

N

+ ;

"RN =  readnoise in electrons/pixel in any SUR.

 

 
It’s important to note that to compare the expected uncertainty (sigma[m] = √σ2

m) for different sets of 
SUR coefficients ci, the coefficients must first be scaled to give KN = 1. This entails dividing the raw 
coefficients by their value of KN. For the nominal set of coefficients {-4,-3,-2,-1,0,1,2,3,4}, KN = 60. The 
value of “m2T – O” and sigma can then be computed using these new ‘rescaled’ ci values. This will ensure 
m2T – O and sigma will be in units of DN / sample interval and no further scaling factors are involved. 
I.e., these are the slope (rate) and uncertainty that will result from a direct linear least-squares fit to the 
SUR data. Note that no prior scaling is needed if signal-to-noise ratios “(m2T – O) / sigma” are being 
compared instead. 
 
 

3 Model Validation 

3.1 Band 1 
 
The above error model was validated using a Monte Carlo simulation. Parameters for the WISE band-1 
detector were used in the first experiment: expected mean background = 8 e-/sec/pixel; 1-σ read-noise per 
ramp sample = 19 e-; gain = 5 e-/DN (really my own guesses), and the sampling interval in a ramp 
corresponds to 1.1 sec. We set T = 0. 
 
100,000 ramps (independent realizations) were simulated using the above photoelectron rate. Gaussian 
distributed read and photon noise (containing an implicit correlated component) were added to the ramp 
samples. Statistics were then computed on the whole ensemble. Two separate sets of SUR coefficients 
were assumed: the nominal {-4,-3,-2,-1,0,1,2,3,4}, and a recently proposed set {0,-7,-5,-3,-1,1,3,5,7} to 
avoid loss in sensitivity brought about by unreliable/unpredictable behavior in the first (i = 0) sample 
(also known as “first sample effect”). Results are summarized below. 
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   Simulation results: 
coeffs: {0,-7,-5,-3,-1,1,3,5,7} 
    mean slope (rate) = 1.759744 DN/sample interval. 
    sigma = 0.632193 DN/sample interval. 
    snr = 2.783556 
 
coeffs: {-4,-3,-2,-1,0,1,2,3,4} 
    mean slope (rate) = 1.760152 DN/sample interval. 
    sigma = 0.537267 DN/sample interval. 
    snr = 3.276120 
 
 

   Error Model results: 
coeffs: {0,-7,-5,-3,-1,1,3,5,7} 
    input slope (true rate) = 1.76 DN/sample interval 
    sigma = 0.631099 DN/sample interval 
    snr = 2.788786 DN/sample interval 
 
coeffs: {-4,-3,-2,-1,0,1,2,3,4} 
    input slope (true rate) = 1.76 DN/sample interval 
    sigma = 0.537267 DN/sample interval  
    snr = 3.276120 

 
 
3.2 Band 4 
 
In the second experiment, parameters for the WISE band-4 detector were used: expected mean 
background = 1200 e-/sec/pixel; 1-σ read-noise per ramp sample = 55 e-; gain = 5 e-/DN (really my own 
guesses), and the sampling interval in a ramp corresponds to 1.1 sec. We set T = 0. 
 
100,000 ramps (independent realizations) were simulated using the above photoelectron rate. Gaussian 
distributed read and photon noise (containing an implicit correlated component) were added to the ramp 
samples. Statistics were then computed on the whole ensemble. Two separate sets of SUR coefficients 
were assumed: the nominal {-4,-3,-2,-1,0,1,2,3,4}, and a recently proposed set {0,-7,-5,-3,-1,1,3,5,7} to 
avoid loss in sensitivity brought about by unreliable/unpredictable behavior in the first (i = 0) sample 
(also known as “first sample effect”). Results are summarized below. 
 
 
   Simulation results: 

coeffs: {0,-7,-5,-3,-1,1,3,5,7} 
    mean slope (rate) = 263.993495 DN/sample interval. 
    sigma = 3.324608 DN/sample interval. 
    snr = 79.405882 
 
coeffs: {-4,-3,-2,-1,0,1,2,3,4} 
    mean slope (rate) = 264.000486 DN/sample interval. 
    sigma = 3.043115 DN/sample interval. 
    snr = 86.753344 
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   Error Model results: 
coeffs: {0,-7,-5,-3,-1,1,3,5,7} 
    input slope (true rate) = 264 DN/sample interval 
    sigma = 3.324512 DN/sample interval 
    snr = 79.410147 DN/sample interval 
 
coeffs: {-4,-3,-2,-1,0,1,2,3,4} 
    input slope (true rate) = 264 DN/sample interval 
    sigma = 3.038530 DN/sample interval  
    snr = 86.884108 

 
 

4 Conclusions 

1. A model for the variance in observed pixel signal is given by Eq. 16. A future enhancement may 
include the effects of ramp non-linearity if found to be significant in the context of variance 
estimation. 

 
2. The error-model predictions for sigma are consistent with those from the simulations. This is 

encouraging! 
 

3. Assuming doubtful (but the only available) values for the gain and read-noise, the coefficients 
{0,-7,-5,-3,-1,1,3,5,7} lead to a slightly higher noise in the signal (by ~17 and 9% for bands 1 and 
4 respectively) than the nominal coefficients where the first sample is retained. This implies a loss 
in sensitivity, but is still within requirements when expressed in µJy units. This is a small price to 
pay, since retention of the first sample (as currently characterized) would lead to a greater loss in 
sensitivity. 

 
4. The loss in sensitivity when going from the nominal set cA = {-4,-3,-2,-1,0,1,2,3,4} to cB = {0,-7,-

5,-3,-1,1,3,5,7} (to omit the first sample) also holds true in terms of signal-to-noise ratio (SNR). 
I.e., for band 1, the SNR drops by ~15% assuming the mean background estimate and simulation 
parameters in section 3.1. Interestingly, the relative loss |(SNRB/SNRA) – 1| from cA to cB 
becomes gradually smaller as the signal (the photon flux) increases. This loss asymptotes to a 
minimum of ~6% for large signals irrespective of band and all other noise parameters. Therefore, 
sensitivity losses due to omission of a first sample may only be significant for bands where the 
mean background signal is low, i.e., bands 1 and 2. For bands 3 and 4 it will be desirable to keep 
the nominal coefficients cA if no first-sample effect is present. This assumes each band can have 
its own SUR coefficients. 
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