

Some WISE Detector Anomalies & Calibration Issues

Frank Masci IPAC/Caltech

MIRI Workshop – March 28-29, 2012

Detector Summary

The Wide-field Infrared Survey Explorer:

- performed an all-sky survey in 2010 in four IR bands: ~ 3.4, 4.6, 12, 22 μm
- sun-synchronous Earth-polar orbit
- we focus here on the WISE band W3 (12um) and W4 (22um) detectors

- Si:As BIB, 1024 x 1024 pixel arrays from DRS, Indium bump bonded to mux.
- 8.8 sec exposures, 9 SUR samples, W4 was 2 x 2 binned on-board

	- <mark>-</mark>		
		<u> </u>	
	T		•
)
Equatorial	07.3 0 0	Y	
		I	
		*	

Parameter	(W3 and W4)	Revised:		
Wavelength Range (µm)	7.5-16.5 (W3) 20-28 (W4)			
Operating Temperature (K)	7.8±0.5	~ 6.8 K (flight)		
Array Format	1024x1024			
Quantum Efficiency (mean over band, with AR coating (%)	>60		electronic gains (flight-derived):	
Pixel Pitch (µm)	18		$W3 \sim 6.83 \text{ e-/DN}$	
Pixel Operability	>90%		W4 ~ 24.5 e-/DN	
Dark Current (mean, @ operating temperature) (e-/sec)	<100	\sim 7, 64 e-/sec (SDL ground)		
Read Noise (e-, CDS rms)	103	\sim 115e-, 209e- (SUR, flight)		
Well Capacity (e-)	>100,000	\sim 138, 158 [x10 ⁵ e-] (SDL ground)		
Power Dissipation (mW)	3.7			
Outputs	4			

• Additive, spatially correlated noise mostly seen in ground testing when connected to test electronics (EMI effect?); mild to negligible in-flight against higher background.

flight W3, banding ~ 0.6%

- IPC: \sim 5-6% coupling in signal in adjacent pixels (W3 and W4). Accounted for in gain, QE estimates.
- **IRAC-ch3:** two short exptime frames, then differenced; courtesy S. Carey

Droop Effects

short-term latent

Two flavors (both additive):

- (i) output quadrant amplifier dependent droop
- (ii) intra-quadrant "split droop" at saturated pixels and bad pixel clusters
- quad biases corrected using reference (bare mux) pixels at top/bottom of arrays
- splits corrected using robust estimates of level differences in active pixels

ghost⁻

two consecutive frames (11 sec apart)
=> note the "droop-rebound" effect

sequential frame number: 1 - 250 (~ 46 minute span)

Image persistence (latents)

- Long term latents from bright (unsaturated, >~ 5-10 Jy) sources lasted until next anneal
 => resulted in blotches corresponding to elevations in responsivity of up to ~ 10%
- Short term latents: e-folding time ~ 3 sec

Blink animation of W3 frame processed with and without dynamic flat-field calibration.

Annealing

- Annealed W3 & W4 arrays to ~ 15 K from nominal operating temp of ~ 6.8 K
- Annealed every 12 hours, mostly to wipe out accumulated long-term latents
- Backgrounds restored ~30 min following anneal

Photometric (responsivity) spatial variations

- High frequency relative pixel-to-pixel responsivity maps (variation ~ $\pm 8\%$: 5-95th percentile range)
- Determined to an accuracy of $\sim 0.04\%$ per pixel using flight data

• Also made low-frequency responsivity maps to catch residuals in gain/ZP variations (from point-source photometry) after high-v maps above were applied: variation $\sim \pm 3\%$

Linearization

- Calibrated on the ground using uniform illumination, per pixel using quadratic model fits to sample-up-the ramp data (note: SUR samples not downlinked in flight)
- Able to linearize up to onset of saturation: $\sim 85 90\%$ full well (max A/D)
- To an accuracy of $\sim 0.24\%$ and 0.62% (random/statistical uncertainties from ground repeatablity)
- Validated in flight using point sources in special experiment in IOC, then empirically using CMDs and comparing to external photometry (Spitzer and 2MASS).

Variation in non-linearity model calibration coefficient:

W3	W4	
%NL; m_{obs}	%NL; m_{obs}	
3.29; 3157	10.23; 10767	
4.09; 4365	10.14; 11511	
5.16; 6392	10.46; 11116	
7.14; 10606	10.66; 11455	
10.49; 18311	10.89; 11855	
*18.98; *32051	11.60; 13103	
too saturated	13.58; 18417	
too saturated	*24.04; *30266	

- Have a (re)calibration plan in place
- Obvious checks: photometric sensitivities, instrumental throughput
- Software/tools in place to derive/validate all calibrations
 - => dynamic (self-calibration) plan in mind to mitigate latents, bias and amplifier drifts, bad pixel transients
 - => includes PSFs, variation over each array, distortion, etc..
- Be prepared for the 'unknown unknowns':
 - => e.g. for WISE, the different flavors of latents and droop caught us by surprise
 - => FOV distortion calibration was harder than expected (especially in W3, W4: scarcity of sources)
 - => W4 sensitivity was x2 lower than expected (bluer filter response than measured on ground coupled with lower transmission at a dichroic)