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1.   Summary 
 
We derive a general formula for the noise variance in the flux of a source estimated from aperture 
photometry assuming (i) prior pixel-flux uncertainties are available for the image (e.g., computed a 
priori from a noise model), and (ii) noise is correlated amongst pixels. Correlated noise usually 
occurs in re-sampled and interpolated images (e.g., mosaics), with the degree of correlation 
depending on the size of the interpolation kernel. The smoothing kernel moves noise-power from high 
to low spatial frequencies and therefore needs to be recaptured to properly quantify the uncertainty in 
the flux summed over a region. Ignorance of correlated-noise will lead to an underestimate of the 
final aperture-flux uncertainty. The 1-σ uncertainty is given by the square root of the variance 
expression below. A formalism for estimating uncertainties when one does not have access to priors 
and is content on ignoring correlated-noise is described in: 
http://web.ipac.caltech.edu/staff/fmasci/home/wise/ApPhotUncert.pdf 
 
Important Pre-Check: 
 
It is important that the prior pixel uncertainties are statistically compatible with the input image data 
on which photometry is being performed. One way to do this is to compare the uncertainties with the 
local RMS pixel-to-pixel fluctuation about the mean or median background level. It is important to 
ensure that the background region is stationary (spatially uniform) and free of contamination from 
outliers (including real sources), otherwise, some trimmed version or robust measure of the RMS 
must be used. Furthermore, it is strongly recommended that the background region used for this 
comparison has approximately uniform depth-of-coverage. The best place to perform this check is at 
the raw-image level prior to mosaicking. This will ensure that the depth-of-coverage is constant, i.e., 
unity. If inconsistencies are found between the data-derived (RMS) noise and prior uncertainties, one 
will need to rescale the pixel-uncertainties according to the ratio RMS/<σi>, where <σi> is the mean 
or median pixel-uncertainty over the region of interest. 
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We first give the final result and define all quantities involved. The derivation is given below. 
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where

N
A

= number of pixels in source aperture

N
B

= number of pixels in background annulus

"
i
= prior pixel flux uncertainty for image, rescaled if necessary

F
corrA

 = correlated noise correction factor for variance in flux in source aperture

F
corrB

 = correlated noise correction factor for variance in flux in background annulus

B = estimated background per pixel in annulus (either mean or median) :

set k =1 if B = mean background/pixel

set k = # /2 if B = median background/pixel

set k = 0 if assume B = 0 or if no background is subtracted
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"
B / pix

2 = variance in sky background annulus in [image units]2 /pixel.

             Can compute from square of RMS deviation from mean or median, and trimmed

             versions thereof. Can also approximate using robust estimators of scale :

            # 0.5 q0.84 $ q0.16( )[ ]
2

# q0.5 $ q0.16( )[ ]
2

where the q are quantiles, or the MAD :

            # 1.4826 median pi $median pi{ }[ ]
2

,  the Median Absolute Deviation from the median

 
 
2.   Derivation 
 
The above formula is derived as follows. First, the equation for estimating the flux of a source using 
aperture photometry can be written: 
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where Ftot is the sum of all pixel fluxes fi

A in the source aperture: 
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and all other quantities were defined above. For the purpose of variance estimation, we assume that 
the sky-background per pixel is derived using a mean of all pixel fluxes in the annulus: 
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Generalization to the median will be described below. 
 
The noise-variance in the estimate from Eq. 1 can be derived using standard error propagation. 
Ignoring correlations between pixels in the source aperture and background annulus (since these are 
assumed to be well separated), we have: 
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The first term on the right is the variance in the total flux in the source aperture. Using Eq. 2, this can 
be written in terms of the variance in pixel i and the covariance between any two pixels (j, k) in the 
source aperture: 
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with the constraint :
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Similarly, the variance in the mean background per pixel as estimated from Eq. 3 can be written: 
 

! 

"
B 

2 =
1

NB

2
" iB

2

i

NB

# + 2 cov j,k( )
k< j

NB

#
j

NB

#
$ 

% 
& 
& 

' 

( 
) 
) 
                                                                 (6)

also with the constraint :

x j * xk( )
2

+  y j * yk( )
2

+ DPRF

2
   

 

 
If the co-add or mosaic was constructed using an interpolation kernel represented by the detector 
Point Response Function (PRF), then a noise fluctuation in a detector pixel will affect all the co-add 
pixels in the PRF's domain after interpolation. Therefore, the maximum range over which co-add 
pixels can be correlated is determined by the maximum linear extent of the PRF, DPRF. This is also 
called the “correlation length”. 
 
Equations 5 and 6 can re-factored respectively as follows: 
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The correlated-noise correction factors in Eq. 9 are further discussed in section 3. 
 
The noise variance in the source flux can then be written be combining Equations 4, 7 and 8: 
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One would not typically use the prior-uncertainties in the sky annulus (σiB) to estimate the variance 
contributed by the background. This is because the annulus may be contaminated by sources and 
other outliers, whose effect is to inflate the σiB priors. Assuming the background is stationary within 
the annulus, the second summation term in Eq. 10 can be replaced by NBσ

2
B/pix, where σ2

B/pix is the 
variance in the sky estimate, e.g., as estimated from a histogram of the NB pixel values. Therefore, if 

! 

B  in Eq. 1 were estimated using an arithmetic mean (or a trimmed version thereof), its variance can 
be written: 
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If however a median was used for 

! 

B  in Eq. 1 and the pixel values are normally distributed, the 
variance as derived from Eq. 11 will be slightly underestimated by a factor of π/2. In other words, the 
median is noisier (less efficient in statistical parlance) than the mean for a randomly drawn sample. 
Nonetheless, given the robustness of the median against outliers, this is a small price to pay. A 
derivation of this “π/2 inflation” exists in each of the following references and was used to derive 
Equation 8 in the following paper: 
 
http://web.ipac.caltech.edu/staff/fmasci/home/statistics_refs/MADstats.pdf 
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Therefore, under the assumption of normally distributed data (which is usually satisfied in the limit of 
large NB with a ‘well behaved’ astronomical detector), the variance in the median sky value per pixel 
is given by: 
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We can combine Equations 10, 11 and 12 into our final general expression: 
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where k = 1 corresponds to 

! 

B  estimated using an arithmetic mean, and k = π/2 is for 

! 

B  estimated 
using a median. Incidentally, if the source-flux estimate involved no sky-background subtraction, or 
the background is known to be negligible a priori, one can set k = 0. 
 
 
3.   Estimating FcorrA and FcorrB 
 
FcorrA and FcorrB in Eq. 9 represent correction factors ≥1 to account for an increase in the variance due 
to correlations between pixels in the source-aperture and sky-annulus respectively. In general, the 
covariance between any two pixels in either the source-aperture or sky-annulus can be written: 
cov(j, k) = ρjkσjσk, where ρjk is the correlation coefficient. Note, ρjk = 0 for pixel separations djk > DPRF 
(the correlation length of the smoothing kernel), and 0 < ρjk ≤ 1 for djk ≤ DPRF. 
 
The spatially uniform background-dominated case 
 
For background-limited observations, i.e., where flux in the source-aperture is dominated by 
background photons, the pixel variance is approximately stationary (spatially uniform) so that     
cov(j, k) ≈ ρjkσ

2
iA. For the sky-annulus, we can also safely assume cov(j, k) ≈ ρjkσ

2
iB. Furthermore, 

there is good reason to believe that pixel-to-pixel covariances are stationary over the aperture and 
annulus regions so that ρjk ≈ constant for any pixel pair j,k with fixed separation djk ≤ DPRF. Therefore, 
for the background-photon dominated case, either FcorrA or FcorrB in Eq. 9 can be reduced to: 
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where N = NA or NB, the number of source-aperture or sky-annulus pixels respectively. We expect 
(and simulations confirm it) that: 
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Fcorr =  constant " NPRFeff  for N # NPRFeff ,                                                         (15)  
 
where NPRFeff is the effective number of pixels in the smoothing kernel, i.e., within some effective 
correlation length. This is not necessarily the total number of pixels spanned by the kernel, unless 
however the kernel is a top-hat (see below). We also expect: 
 

! 

Fcorr "#N for N < NPRFeff ,                                                                                 (16) 
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where α is a (non-trivial) constant of proportionality. Therefore, the correction factor is a linear 
function of the number of pixels in the aperture up to some effective N ≈ NPRFeff, and then levels off to 
some constant value NPRFeff for N ≥ NPRFeff. 
 
If one has no knowledge of the smoothing kernel, the correlation coefficient ρjk in Eq. 14 can be 
calibrated as a function of pixel separation djk from the image using some robust estimator of the 
autocorrelation function (ACF), preferably within stationary regions. An analytic function can then be 
fit to ρ(djk) for use in evaluating Eq. 14. If the smoothing kernel is known, ρ(djk) can be derived from 
the kernel directly, either numerically or analytically. It can be shown that for a pixelized PRF kernel 
where a value rij therein is defined as the response at pixel j when the PRF is centered on pixel i, 
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where Np is the ‘infamous’ effective number of noise pixels for the PRF kernel in question. The 
derivation shall be added in future. For an explanation of Np, the reader is referred to: 
http://web.ipac.caltech.edu/staff/fmasci/home/wise/noisepix_specs.pdf. For a top-hat PRF volume-
normalized to unity, the (constant) values are rij = 1/NPRF, and it’s not difficult to show from Eq. 17 
that Np ≡ NPRF and ρjk = 1 ∀ j,k. Unless one wants to satisfy their mathematical curiosity, explicit 
calculation of Fcorr using ρjk for any PRF in general is unnecessary as we shall show. The full 
derivation is deferred to a future paper. 
 
Consider the simple case of a top-hat PRF as used when interpolating detector pixels onto a finer co-
add grid using overlap-area weighting. Here we have ρjk ≈ 1 over the span of the NPRF co-add pixels 
overlapping with an input pixel. The double summation in Eq. 14 is just the number of distinct co-add 
pixel pairs in this span and evaluates to N(N-1)/2. Eq. 14 then simplifies to Fcorr ≈ N = NPRF = Np (the 
number of ‘noise pixels’ as shown above)! This is also the resampling factor, i.e., the number of 
output (co-add) pixels per input pixel. For the general PRF case, it can also be shown (the full 
derivation is deferred) that the effective number of pixels in the smoothing kernel, i.e., NPRFeff in Eq. 
15, is ≈ Np. Hence in general, Fcorr = Np as the aperture size increases beyond the effective correlation 
length of the kernel, i.e., contains N > Np  pixels. It’s important to note that Np for the kernel should be 
measured in terms of the number of target image (co-add) pixels, not native detector pixels. 
 
The source-photon dominated case 
 
When flux in the source-aperture is dominated by actual photons from the source, the pixel-variance 
and covariances ρjkσjσk (at fixed pixel-to-pixel separation) therein can no longer be assumed to be 
stationary since the Poisson variance generally follows the profile of the source. Eq. 14 will no longer 
hold, however, some workable approximation based on averaging correlations within the aperture is 
still possible. Nonetheless, it’s comforting that simulations also show that Fcorr ≈ Np is a good 
approximation in the large aperture limit. 
 
Consequently, for the source-photon dominated case, FcorrA is expected to depend on the relative 
contribution of source-to-background flux in the source aperture. We have parameterized this using 
the parameter Rsb. In the notation of Equations 1-3, this is defined as: 
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To account for the complications noted above: (i) estimating correction factors for the source-photon 
dominated (spatially non-uniform) case, and (ii) the dependence of correction factors for small 
apertures with < NPRFeff pixels (i.e., α in Eq. 16), we have resorted to a Monte-Carlo simulation. Here 
are the simulation steps used to estimate FcorrA and FcorrB: 
 

1. Create a test ‘truth’ detector image containing some background 

! 

B  per pixel and a point 
source spike with flux Fsrc in the middle; 

2. Convolve this truth image with the detector PRF, volume-normalized to unity; 
3. Add Poisson noise to the detector image. We assume we’re in the Gaussian limit and sample 

our pixel errors εi from a normal distribution: εi ~ N(0, σ2 = pi) for pixel value pi; 
4. Interpolate the detector image to a new grid (i.e., the “co-add” image grid) using your favorite 

interpolation kernel. For WISE this will be the detector PRF as implemented in AWAIC [see: 
http://web.ipac.caltech.edu/staff/fmasci/home/wise/awaic_adass08.pdf]; 

5. Compute and store values of FA (≡ Fsrc), FB (≡ NB
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B ), VA, and VB, defined as respectively: 
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             VA and VB represent the sum of squares of the input prior 1-sigma uncertainties. 
6. Go back to step 3 and re-simulate a new realization of Poisson distributed noise, saving the 

values from step 5 at each trial; 
7. After 500-1000 noise realizations, compute the variance in FA and FB over all Nt trials via: 
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8. The source-aperture and sky-annulus correction factors are computed from the ratios: 
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So how do we know that the values for FcorrA and FcorrB computed in this manner are correct? The 
trick is that we also compute the variance in the source flux over all trials, σ2(Fsrc), where Fsrc is 
estimated at each trial (noise realization) using Eq. 1. When this is compared to the predicted variance 
using Eq. 13, values of FcorrA and FcorrB as precisely computed above are needed for consistency. FcorrA 
and FcorrB will be computed for each band-dependent PRF and a range of NA, NB, and Rsb values. Rsb is 



 8 

defined by Eq. 18 and is only applicable to FcorrA. A user performing aperture photometry can then 
select (or approximate) the appropriate FcorrA and FcorrB to use in the boxed equation in section 1. 
 
We also note that FcorrA (as well as FcorrB) can be computed (or verified) directly from the post-
smoothed image by throwing many apertures at random, retaining those apertures which fall within 
regions with a spatially-uniform, source-free (and confusion-free) background, computing their 
summed-flux variance as in step 7 above, and then comparing to the pixel variance, VA. The 
difficultly here is having enough random samples that are not significantly skewed by contaminating 
sources, confusion, and/or a varying background. 
 
 
4.   Example using a WISE test PRF 
 
The example below is for a band-1 WISE PRF (FWHM ~ 6″) used in creating an interpolated (co-
add) image with resampling factor of 4 (= number of output co-add pixels per input native pixel with 
linear scale 2.75″ arcsec). Note, the PRF used here dates back to July 2008. Results are shown for two 
test source-apertures and one sky annulus. 
 
 
Ap. Radius      Rsb                  FcorrA 
(coadd pix)   (Eq. 18) 
----------------------------------------------------- 
   6     0.99993001330583        27.0115684322831 
   6     1.23171885262548        28.3402138075576 
   6     1.46350319270776        29.177824695401 
   6     1.69528559355028        29.7575425004733 
   6     1.92706696650331        30.182409774697 
   6     2.85418713529996        31.1364509404322 
   6     3.78130296465519        31.5880144532236 
   6     7.48974884015606        32.2096004158001 
   6     14.9066046154863        32.4674530971021 
   6     29.7402667820869        32.5596714958217 
   6     59.4074963888088        32.5798367932639 
   6     118.741845827015        32.5714647056869 
  12     0.999822875462531       29.7736948915878 
  12     1.25630020660288        30.937000934271 
  12     1.51277377621095        31.7747186767907 
  12     1.76924612740915        32.3876481487989 
  12     2.02571799730685        32.8537565183179 
  12     3.05160093677735        33.9616488259818 
  12     4.0774798439602         34.5275668375048 
  12     8.18097952895852        35.3987282525947 
  12     16.3879429638275        35.8529450916661 
  12     32.8018249605264        36.0914961279744 
  12     65.6295199442466        36.2182614825564 
  12     131.284829080113        36.2867436648321 
----------------------------------------------------- 
 
 annulus correlated-noise correction factor for 36 -> 51 co-add pixels: 
 FcorrB = 31.8995915784158 
 
For comparison, the effective number of ‘noise pixels’ for this PRF (in number of co-add pixels) is 
NPRFeff  ≈ 34.261, consistent with Eq. 15. 


