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1. Overview

PSFs are computed by averaging background-subtracted volume-normalized point-source postage
stamps in a 3x3 oversampling grid. Raw postage stamps are 9x9, so the oversampling grid is 27x27.
Averaging is done via a two-pass process with outlier rejection, separately in a 5x5 partition of the
array and in one global average. By default, the latter average omits data from pixels whose distance
from the array center is more than 91.5% of the distance from the center to a corner. Currently, any
postage stamp containing a NaN or masked pixel is discarded.

A given postage stamp may be shifted by +1 oversampling pixel on each axis to position the
point-source centroid over the central oversampling pixel, (14,14), whose central (X,Y) coordinates
are (13.5,13.5). Averaging may be done by including each array pixel in all nine projected
oversampling pixels beneath it (called “smoothed", because this convolves the oversampling pixel
size into the resulting PSF) or only into the one oversampling pixel directly beneath the array pixel
center (called "interlaced", the default).

Interlaced mode not only avoids the slight broadening of the PSF but also leaves the noise in the
27x27 grid uncorrelated; it does require a greater data volume, however, than the smoothing mode.
Interlaced mode is assumed in the uncertainty calculations in that the pixels are assumed
uncorrelated. All uncertainties in the moment parameters stem from the PSF pixel uncertainties,
which are computed from the dispersions about the pixel averages divided by v'(N-1), where Nis the
number of samples averaged in the given pixel.

2. Centroids
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where p, is the value of pixel (i,7). Note that the volume normalization of the PSF removes the need
to divide the summation by the sum of the p,. We can write p, as the sum of a true value, indicated
by an overparenthesis, and an error, indicated by ;. Other errors will also be indicated by ¢, with an
appropriate subscript.
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Using these in the centroid equations and subtracting off true values from each side results in
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where cross-pixel terms are dropped in the expectation value of the squared summation because the
pixels errors are taken to be uncorrelated. The uncertainty in the Y centroid is given by the

corresponding equation:
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3. Principal Axes of the Second Central Moments

The second central moments of the PSF are just the elements of the response covariance matrix:
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Like the centroids, these elements are linear in p,, and a similar “true plus error” formulation leads
to
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where we use ¥ to indicate variance rather than ¢% in order to accommodate the covariance element
(i.e., to avoid the appearance of a squared quantity for something that may be negative). Finding the
principal axes involves diagonalizing M; this is straightforward for a 2-D real matrix:



A= M, + M,
B= (M, - M,)*+4M?,

S - /A+B S - A- B
maj ~ 2 ' min ~ 2

The angle from the X axis to the major principal axis is undefined if the principal axes are equal, i.e.,
if the PSF is circular, in which case, the off-diagonal element will be zero. It may also happen that
the principal axes are not equal, but the off-diagonal element is nevertheless zero, in which case the
PSF is already aligned with the X and Y axes. Taking these possibilities into account:

if | M,,|< 10% M,,, then
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The uncertainties of the principal axes are obtained as follows, where some care is needed to avoid
division by zero.

Q= (MX_ MY)2 + 4M)2(Y

if 0> 0then
D=,/0
M, - M
T: X Y
D
else
D=99x10%
T=0
end if

These temporary variables are needed in evaluating the derivatives of the principal moments with
respect to the elements of M:
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The errors will be assumed small enough to allow a Taylor’s expansion with terms of second and
higher order dropped. For example, the uncertainty variance in the semimajor axis S, is:
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Squaring and taking expectation values gives:
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Similar equations apply for the uncertainties in S,,,, and y. The derivatives for y involve lengthier
expressions and are omitted here; they will be supplied upon request.

4. Axis Ratio

The ratio of the minor principal axis to the major principal axis is R = §,,,/S,,,,- The uncertainty is
computed as follows.
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5. Noise Pixel

The noise pixel value is computed as follows, where the summations are limited to a radial distance
from the centroid R .
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where the 9 in the denominator scales the value to the array-pixel size, i.e., accounts for the 3x3
oversampling. The uncertainty can be obtained by brute force as follows, where the summation
notation is simplified but must be understood as being taken within the R, region.
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