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1. Overview

The motion of the WISE telescope relative to the J2000 coordinate system induces a shift in the
apparent position of celestial objects expressed in that system. This is caused by the aberration of
light rays entering the telescope. This effect follows from the fact that light travels with finite speed,
and therefore during the time it takes a photon to travel a given distance, the telescope itself moves
by an amount proportional to its speed in the reference frame. This results in a slight shift in apparent
direction that depends on the angle between the line of sight and the velocity vector. Since WISE
positions are calibrated against astrometric standard stars, and since the positions of those stars as
observed by WISE are similarly affected by aberration, all celestial objects in the field of view are
shifted by approximately the same amount, and J2000 position error due to aberration is almost
canceled. This is only approximate, however, because a given pixel’s line of sight depends on the
pixel’s location in the array, and so the exact relationship between line of sight and the velocity
vector varies over the array. The resulting pixel-to-pixel variation of aberration is called differential
aberration.

Because each pixel experiences aberration that is generally different from that of other pixels, in
effect a very small distortion is induced in the mapping between pixel array coordinates and celestial
position. For WISE, this distortion has a maximum amplitude of several tenths of an arcsecond. This
is below the mission requirement on position reconstruction accuracy, but not orders of magnitude
below it, and for typical source densities, the PRex processing is capable of detecting it. Since it is
a purely geometrical effect, it can be computed theoretically and removed by including its effects on
the total distortion model. This is preferable to removing it as a time-dependent scale-factor variation
calibrated by PRex, since the latter depends on WISE source detections whose extracted positions
have an error dispersion that adds noise to the calibration, whereas the theoretical model is limited
only by negligible approximation errors (e.g., the use of the nonrelativistic formula for aberration,
which is entirely satisfactory for the velocities involved in this case). Furthermore, this is the only
known source of distortion that varies with time on as short a scale as the orbital period, and by
including it in the total distortion model at the top of the processing chain, time-dependent distortion
effects are made transparent to the downstream modules.

2.  Geometrical Derivation

Although it was discovered and satisfactorily explained (within the context of Newtonian physics)
by James Bradley in 1725, light aberration is actually a relativistic effect, and in 1905 Einstein used
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where θo and θs are angles measured in the plane containing the line of sight and the velocity vector
with magnitude v, c is the speed of light, the subscript o denotes the angle between the velocity
vector and the direction where the observed object would appear to be if the speed of light were
infinite, and the subscript s denotes the corresponding angle where the object actually appears to be,
given that the speed of light is finite.

For WISE, the relevant velocity is the sum of the spacecraft velocity in its orbit about Earth and the
velocity of Earth in its orbit about the sun. This results from the fact that WISE positions are
expressed in J2000, which is an inertial sun-centered coordinate system. In other words, the relevant
velocity is that relative to the coordinate system in use. If, for example, the coordinate system were
an inertial system at rest with respect to the Milky Way, then the velocity of the sun about the
Galactic center would enter and result in vastly larger aberration, most of which is the same for the
sun and the spacecraft.

So the value of v varies between about 22.3 to 37.4 km/s, for which v/c is on the order of 10-4. We
can safely ignore relativistic effects, therefore, and the following approximation based on simple
trigonometry is completely satisfactory. This is just the formula one would derive using classical
physics for the problem usually employed for visualizing aberration, that of a person with an
umbrella in rain that is falling at some known angle in the rest frame of a street. It is easiest to
visualize for the case in which the rain is falling vertically. If the person is standing still, the umbrella
is best pointed straight up. If the person is walking with speed vp, and the rain is falling with speed
vr, then the umbrella is best pointed forward at an angle θ from the vertical, where tanθ =  vp /vr .

For the more general case in which the rain is
falling at some angle other than the vertical, some
trigonometry is needed to derive the relationship
between the angle of the rain in the rest frame and
that in the moving frame. We will also switch
from an umbrella to a telescope and from rain to
light arriving from the direction of an observed
object. The diagram on the left shows a vector of
arbitrary length L at an angle θo  pointing in the
direction of the observed object as measured in
the rest frame, the XY coordinates. The telescope
moves in the X direction with speed v. It takes
light a time L/c to travel the distance L (which is
going to cancel out below), and during this time,
the telescope moves a distance vL/c, making the
object appear to be at the angle θs. The tangent of
θs is seen to be:
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This equation is completely adequate for the nonrelativistic case. We may inspect the shift itself
more closely by defining Δθ /  θo -  θs and then using the law of sines:

(3) 

Then canceling L and re-arranging yields

(4)

In nonrelativistic applications, Δθ is usually small enough to use Δθ . sinΔθ, and furthermore, the
distinction between sinθs and sinθo in Equation 4 can usually be ignored at the cost of a maximum
relative error of order about v/c. That may be useful when only the rest-frame angle θo is known; if
greater accuracy is needed, then either iterating Equation 4 or simply using Equation 2 is advisable.

3.  WISE Processing

During the in-orbit-checkout calibration of distortion (see J. Fowler et al., WSDC-D-T033),
variations in the plate scales were observed with a one-orbit period. The period was deduced from
plots of scale-factor corrections versus time and versus ecliptic latitude of the telescope boresight.
The latter are more revealing, since they combine data from many orbits. The plot below shows the

variation in X scale factor
correction as a function of
ecliptic latitude. These data
cover the 14 orbits of Julian
Day number 2455282. Results
from ascending scans are
shown in blue, descending in
red. Each point is an average
over 4 degrees containing ap-
proximately 78 frames. Except
for some residual noise and a
few outliers, the data behave
exactly as differential aberra-
tion predicts, with negligible
change from the mean scale
factor at the poles and a rela-
tive correction of magnitude



about 10-4 in the ecliptic.

To compute aberration, the velocity vector of the spacecraft in J2000 is needed. This is supplied in
the FITS headers of each frame via the parameters SCVELX, SCVELY, and SCVELZ, in units of
AU/day. This vector will be denoted (Vx, Vy, Vz). This must be mapped into frame coordinates, whose
RA, Dec, and Twist are obtained from the FITS header parameters CRVAL1, CRVAL1, and
WCROTA2, denoted (α, δ, γ). A transformation matrix is defined as follows: starting with a Cartesian
XYZ system whose Z axis points to the celestial north pole and whose X axis points to the vernal
equinox, we perform three Euler rotations as follows, where we will use α = 120o, δ = 60o, and
γ = 30o for illustration.

φ1 = α-90o about Z : 

φ2 = δ-90o about X :

φ3 = γ+180o about Z:
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This places the Z axis on the celestial position (α, δ) with the
Y axis aligned with the array’s Y axis. The three rotations
yield the following transformation matrix.

(5)

This corresponds to a Z axis that looks outward from the origin, whereas the band-frame coordinates
look in from the sky. The X and Z axes must be reflected; this will be taken into account via the fact
that the angular scale factor on X is negative. The Z reflection can be ignored, because that axis is
the line of sight, and only the sine of the angle between a line of sight and the velocity vector comes
into play, and sinθ = sin(180o-θ). Technically, we are not using band-frame coordinates as defined
in the PRex subsystem, so we will refer to this system simply as the “frame system” (e.g., band-
frame pixel coordinates run from 1 to 1016 in W1-W3, whereas our origin is the Z axis, and so pixel
coordinates run from -507.5 to +507.5; appropriate adjustments are made for W4). The frame-system
components of the velocity vector are therefore

     (6)



The Z axis of the frame-system coordinates is the line of sight from the center of the array, so the
velocity vector (Vfx, Vfy, Vfz) defines the magnitude and direction of the velocity with respect to the
array center. For a given frame, the time tag is taken to be the midpoint of the photometric
integration period, and so the velocity vector is essentially the average over that period, but changes
in magnitude and direction are small enough to ignore. The magnitude changes typically by about
60 m/s frame-to-frame, or 0.2%. The angle relative to Z typically changes by a few tenths of a
degree. Using the average over such small changes should have an approximation error at least an
order of magnitude smaller, so that differential aberration effects of 0.25 arcsec should be computed
with an accuracy better than 0.5 milli-arcsec.

The velocity magnitude extrema occur when the telescope is observing the ecliptic poles. The orbital
geometry results in a maximum total velocity of 37.4 km/s in the north, where the spacecraft’s
velocity about the Earth adds to the Earth’s velocity about the sun. At the south pole, the former
subtracts from the latter, producing a magnitude of 23.4 km/s. The maximum total aberration is
therefore at the ecliptic north pole, with a magnitude of 25.74 arcsec. As Equation 4 shows, the
aberration peaks where sinθs peaks, and at the north pole, θs = 90o, and v/c also peaks there. But we
saw that the scale-factor variations are minimal at the poles; that is because they depend on
differential aberration, not total aberration. Since the aberration varies as sinθs, its differential varies
as cosθs, which is maximal in magnitude near the ecliptic plane (it is not quite in the ecliptic because
of the spacecraft velocity about the Earth). Note that we will not use the cosθs dependence explicitly;
if we did, we would have to reflect Z, but we will compute differential aberration numerically as the
difference between total aberration at two points in the array (see Equation 7 below).

The figure on the left illustrates a
velocity vector V mapped into frame-
system coordinates. The line of sight
of the center of the array is the Z axis
in the rest frame of the array. The
presence of the velocity vector shifts
that line of sight in the J2000 system
by the amount Δθ in the plane con-
taining Z and V. This angular shift
translates into pixel shifts on the X
and Y axes, indicated in the figure by
ΔX and ΔY, respectively. These com-
ponents are in the same proportion as
Vfx and Vfy (the components of V on
the X and Y  axes).

We compute differential aberration for a given pixel by computing the total aberration for that pixel
and subtracting the total aberration for the center of the array, i.e., the frame-system Z axis. This
results in differential aberration being defined to be zero at the center of the array. The total
aberration there is computed by using Equation 4 with θs approximated as the angle between V and
Z (i.e., θo) and with the small-angle approximation Δθ . sinΔθ:
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Sensitivity testing has shown that in double precision, the use of the dot product to obtain the angle
is sufficiently accurate over the entire range of angles involved. As shown, ΔX and ΔY are in radian
units; they can be rescaled to pixel units to sufficient accuracy by using the nominal pixel scale.

The total aberration of a given pixel with frame-system coordinates (X,Y) is computed in exactly the
same way after first rotating the coordinate system to one in which that pixel’s line of sight is the Z
axis. This is one of several methods that account for the fact that when V is nearly parallel (or
antiparallel) to the frame-system Z axis (i.e., when differential aberration is maximal for a given
velocity magnitude), the aberration direction components wx and wy for a given pixel are highly
sensitive to the pixel’s position the array.

This rotation employs small angles, and therefore we can ignore the order in which the rotations are
done. We will use (φx ,φy) = (Sx×X, Sy×Y) in radian units, where Sx and Sy are the angular scales on
the X and Y axes, respectively (recall that Sx is negative). Technically this would require employing
the full distortion model, since optical distortion can cause pixel line-of-sight shifts up to the
equivalent of several pixels in the corners. The difference in aberration between points two pixels
apart (i.e., 5-7 arcseconds) is quite small, however, and so we expect that this can be ignored as a
second-order effect in an already-small phenomenon. Furthermore, this much optical-distortion shift
affects only a small minority of the points that go into the fitting.

The (X,Y) coordinates of the array location whose line of sight is the Z axis are (0,0). To rotate the
Z axis to a direction corresponding to an arbitrary (X,Y) location, we can rotate about the Y axis by
the angle φx and then rotate about the X axis by the angle -φy. These rotations can be done in either
order, because the rotation angles are very small, and so rotations commute to sufficient accuracy
(sensitivity testing revealed maximum aberration errors at the milli-arcsec level over the range of
realistic cases). The two rotation matrices are:
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Applying these to the T matrix in the order shown gives the transformation TN from celestial
Cartesian coordinates to a frame system whose Z axis is the selected pixel’s line of sight:

(9)

The TN  matrix is then used instead of the T matrix in Equation 6 to get the velocity components in
this pixel-centered system. These components are then used as shown in Equation 7 to get the total
aberration components for the given pixel, which we will denote ΔXp and ΔYp, respectively. The
differential aberration, denoted δXp and δYp, is then

 (10)

4.  Correcting for Differential Aberration

It was decided to correct for differential aberration early in the WSDC pipeline so that all
downstream processing would be based on focal-plane geometry not distorted by this effect. The
distortion can be approximated well by a first-order polynomial in X and Y, since the entire
significant extent of the phenomenon manifests as a change in plate scale. The program diffabr8
was designed to accomplish the correction by preprocessing the L1A frames as follows:



du X dA00 dA01Y dA10 X
dv Y dB00 dB01Y dB10 X
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A.) Read the FITS header to obtain: the J2000 instrument angles CRVAL1, CRVAL2, and
WCROTA2; the J2000 spacecraft velocity vector SCVELX, SCVELY, and SCVELZ; the
band number BAND (needed for mapping W4 correctly in step D below).

B.) Construct the instrument Cartesian coordinate system (Equation 5) and map the space-
craft velocity vector into it (Equation 6).

C.) Compute the central aberration (Equation 7).

D.) Loop over a two-dimensional 31×31 grid of equally spaced (X,Y) locations that uniformly
span the array; for each location, compute the differential aberration (δXp, δYp) (Equations
8-10) and store in arrays ImgX and ImgY, respectively.

E.) Use the ImgX and ImgY arrays in separate first-order polynomial fits to obtain the
coefficients dA00, dA01, dA10, dB00, dB01, and dB10 (see Appendix A):

(11)

where the minus signs enter in order to be consistent with the definition used for distortion.

F.) An ingest utility then reads the stdout from diffabr8 and reads the FITS header to
obtain the SIP coefficients below second order, A_0_0, A_0_1, A_1_0, B_0_0, B_0_1,
B_1_0, AP_0_0, AP_0_1, AP_1_0, BP_0_0, BP_0_1, and BP_1_0; it then modifies these
coefficients as follows:

      A_0_0   ² A_0_0   + dA00
             A_0_1   ² A_0_1   + dA01

      A_1_0   ² A_1_0   + dA10
      B_0_0   ² B_0_0   + dB00
      B_0_1   ² B_0_1   + dB01
      B_1_0   ² B_1_0   + dB10
      AP_0_0 ² AP_0_0 - dA00

             AP_0_1 ² AP_0_1 - dA01
      AP_1_0 ² AP_1_0 - dA10
      BP_0_0 ² BP_0_0 - dB00
      BP_0_1 ² BP_0_1 - dB01
      BP_1_0 ² BP_1_0 - dB10



5.  Examples

Differential aberration is minimal
near the ecliptic poles and maximal
in the ecliptic, despite the fact that
cosθs is not maximal there; cosθs is
maximal at θs = 0, where the sum of
the Earth’s velocity around the sun
and the spacecraft’s velocity about
the Earth combine  to make the total
velocity as nearly parallel as possible
to the telescope boresight. The sche-
matic on the left illustrates this; Vsc is
the spacecraft velocity about the
Earth, VE is the Earth’s velocity
around the sun, and VT is the total
velocity. The latitude at which θs = 0
is about -15o, but at that point the
total velocity has dropped from about
30.6 km/s with the line of sight in the

ecliptic to about 28.6 km/s at this latitude (using average velocities), because the spacecraft’s
geocentric velocity subtracts from the Earth’s heliocentric velocity. The loss of total velocity by a
factor of 0.9355 overcomes the gain in cosθs from about 0.9685 in the ecliptic to 1.0 at this latitude,
so the differential aberration is not maximal there; the ecliptic wins because of the higher total
velocity. The diagram should not be taken to suggest that the spacecraft passes over the Earth’s north
pole, of course, since the orbital inclination places the orbit plane about 7 degrees off the pole.

Furthermore there are seasonal variations in the relationship between the telescope line of sight and
the local normal. The diagram below shows the orbital plane and Earth’s terminator at the northern-
hemisphere winter and summer solstices. The orbital plane is tied to the Earth’s geographical frame,
maintaining the 7 degree inclination throughout the year but precessing at essentially the same rate
as the Earth’s angular revolution around the sun.



When passing through its closest approach to the Earth’s north pole, the telescope look direction is
parallel to the Ecliptic North vector; clearly it is looking out of the orbit plane much more near
summer solstice than near winter solstice. So the relationship between telescope look direction and
total velocity vector undergoes significant seasonal variations, and these produce seasonal variations
in the differential aberration, although not with much amplitude. In addition, the spacecraft spends
some time in Earth’s shadow near summer solstice.

The size of the differential aberration effects are practically symmetric about the ecliptic plane. For
±Δ ecliptic latitude, above the plane, the total velocity is larger while cosθs is smaller; at the same
distance below the plane, cosθs has grown larger by the same amount as the total velocity has grown
smaller, yielding the same amount of differential aberration. This symmetry, and also the amount of
seasonal variation, can be seen in this plot of theoretical relative array Y-axis scale-factor change as
a function of ecliptic latitude for real WISE frame data uniformly sampled between just after winter
solstice through summer solstice (January 14, 2010, survey start, through June 21, 2010).

This can be compared to the plot in section 3 (note the switch in color assignments, however). The
variation in thickness is due to the seasonal variations. The inside edges come from summer solstice,
and the outer edges come from winter solstice. Since the telescope scans very close to the terminator
meridian, when it passes through the ecliptic, it is always looking almost parallel or antiparallel to
the Earth’s velocity vector around the sun, but at summer solstice the Earth is only about two weeks
from aphelion, and so that velocity has a magnitude of only 97.4% of the winter-solstice magnitude,
slightly lowering the aberration effects. It is also seen that the effects for ascending scans are



opposite those for descending scans. This is because the effect of aberration is to shift the apparent
position toward the velocity vector. On descending scans, this is not far from the array-center line
of sight, so that edge pixels shift their view toward the center, reducing the effective plate scale. On
ascending scans, the velocity vector points more nearly toward the opposite side of the sky from the
look direction, and so edge pixels shift their view away from the center of the array, increasing the
effective plate scale.

The shape of the distortion induced by differential aberration can be seen in a vector-flow diagram
such as used in general discussions of distortion (see “WISE IOC Distortion Calibration”, Document
number WSDC D-T033). A refined distortion model (relative to the IOC model) was generated from
five 5-day periods uniformly sampled from the cold mission. To probe the effects of differential
aberration, two full distortion fits (no precompensation for differential aberration) were generated
using only frames within 20 degrees of the ecliptic; one fit used only ascending scans, and the other
used only descending scans. Then the descending-scan model was subtracted from the
ascending-scan model. The difference between the two models is twice the distortion induced near
the ecliptic by differential aberration alone. The vector-flow diagram for the difference is shown
below. The black dots are uniformly spaced pixel locations, and the red lines are the displacement
vectors, which have been scaled by a factor of 250 relative to the true plate scale.

For the final products, the distortion model has been computed from WISE/2MRef sources corrected
for differential aberration, i.e., the distortion model reflects what would happen if there were no
differential aberration effect. Then each individual frame has the adjustment for differential
aberration peculiar to its geometry made at the beginning of the processing chain. In other words,



every frame has a slightly different distortion model that corrects for both optical distortion and
differential aberration. All downstream processing that uses the distortion model therefore includes
correction for both effects.

The theoretical model for differential aberration is noiseless (to within some negligible
approximation error) and therefore preferable to models obtained by fitting real (noisy) data, but the
latter effect can be seen in the PRex calibrations for plate scale, as shown above in section 3. These
effects are the same in all bands but most visible in W1 and W2 because of the greater source
volume. The effects are similar on both axes, although greater residual noise is seen in W1 Y than
W1 X, and in W2 X relative to W2 Y. Since the effects are similar, we will show only the W1 results
here, computed from scans 06257a, 06257b, 06258a, and 06260a, with scale changes averaged inside
of 10-degree-wide ecliptic latitude bins.

These are the scale-factor corrections that PRex (the sfprex module) would apply to correct the data,
given no precompensation for differential aberration (X left, Y right).

These are the scale-factor corrections that would be applied to correct the data after precompensation
for differential aberration.
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Appendix A: Polynomial Fit

As described in Section 4 item E (Equation 11), the differential aberration is sampled on a 31×31
grid of equally spaced (X,Y) locations that uniformly span the array, i.e.,  the combination of all
coordinates Xi and Yj, where i and j each run from 1 to 31. For each location, the differential
aberration (δXp, δYp)ij is computed, resulting in two grids of position offsets due to differential
aberration, one for each axis. These offsets are negated and represented as du on X and dv on Y to
be consistent with the gnDSTR notation. A first-order polynomial is fit to each set of offsets in the
same manner for each axis, and so we will describe only the X axis herein.

 To reduce clutter, we will use the notation du = a + bY + cX, where these coefficients are related to
the SIP coefficient corrections by a / dA_0_0, b / dA_0_1, c / dA_1_0. The fitting dispersion to
be minimized is

(A.1)

This is equivalent to a chi-square with all the duij having the same uncertainty, which can therefore
be set to unity and dropped from the notation. To minimize the dispersion, we take its derivatives
with respect to the coefficients and set them to zero, obtaining

(A.2)

Regrouping,

(A.3)

With the definitions of a matrix M and vector s¸,
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(A.4)

we have

(A.5)

where D is the determinant of the M matrix, which is symmetric. This yields the polynomial
coefficients.
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