Wide-field Infrared Survey Explorer (WISE)

GnDSTR Subsystem Design Document

Version 1.5

28 August 2009

Prepared by: John W. Fowler \& Howard L. McCallon

Infrared Processing and Analysis Center
California Institute of Technology

WSDC D-D013

Concurred By:

Roc Cutri, WISE Science Data Center Manager

Tim Conrow, WISE Science Data Center System Architect

John Fowler, WISE Science Data Center PRex Cognizant Engineer

Howard McCallon, WISE Science Data Center PRex Cognizant Engineer

Revision History

Date	Version	Author	Description
1 October 2008	1.0	J. W. Fowler	Initial Draft
2 October 2008	1.0	J. W. Fowler	Corrections to some notation
21 April 2009	$1.1-1.25$	J.W. Fowler	Removed scale-factors from fitting; added outlier rejection to first pass (already in second pass); added RMS residual summary; added correlation coefficients to uncertainty output table; updated error message handling; added "no-skew" option "-x"; expanded input table width to 5000 characters.
14 August 2009	1.3	J.W. Fowler	Added "-s2f" to redistort frame positions (to get full distortion model, not incremental)
20 August 2009	1.4	J.W. Fowler	Removed "-s2f" (RvB will now contain distorted positions)
28 August 2009	1.5	J.W. Fowler	Added text-file output for the calibration meta-data table ("-f") and self- consistency check option ("-s")

Table of Contents

1 Introduction
1.1 Subsystem Overview
1.1.1 Requirements
1.1.2 Liens
1.2 Applicable Documents
1.3 Acronyms

2 Input
2.1 Control Input
2.2 Source Detections and Astrometric Reference Input

3 Processing
3.1 Initialization
3.2 Polynomial Fitting
3.3 Uncertainties

4 Output
4.1 Model Parameters Output File
4.2 Polynomial Parameter Error Covariance Matrix Output File
4.3 Residuals Statistics Output File
4.4 Residuals Image Output Files
4.5 Calibration Meta-Data Output File
4.6 Self-Consistency Check Output File

5 Testing
5.1 Testing
5.2 Monte Carlo Analysis

1 Introduction

1.1 Subsystem Overview

This document presents the requirements, design, algorithms, and state of implementation of the GnDSTR (Generate Distortion) subsystem of the WSDC data processing system. GnDSTR runs offline on a list of RvB files generated by the sfprex module of the PRex subsystem.

1.1.1 Requirements

The GnDSTR subsystem is required to compute the coefficients of a polynomial distortion model by performing a chi-square minimization fit using a collection of matched pairs of point sources, where each pair consists of one WISE source and one 2MASS source. Both forward and backward models are required, i.e., conversions from distorted coordinates to undistorted coordinates and vice versa. Other requirements include optional output files containing the error covariance information for the polynomial coefficients, a table file of residuals, and an image of the distribution of residual magnitudes over the imaging array. The Level 4 requirements supported by this processing are as follows.

L4WSDC-014: The root mean square (1σ) error in WISE catalog positions with respect to 2MASS All-Sky Point Source Catalog positions shall be less than 0.5 " on each axis, for sources with SNR > 20 in at least one WISE band.

L4WSDC-017: The WISE Source Catalog shall contain equatorial (J2000) coordinates for objects detected in at least one band.

L4WSDC-018: The WISE Source Catalog shall contain uncertainties in the coordinate measurements for each object.

L4WSDC-046: The WSDS Pipeline processing shall reconstruct the J2000 equatorial positions of sources detected on the calibrated WISE images relative to the positions of objects in the 2MASS All-Sky Point Source Catalog that are detected in the WISE science images.

L4WSDC-062: The WSDC shall perform quality analysis of all WISE science data and make reports available on a regular basis.

L4WSDC-078: The WISE science data products shall use the International Celestial Reference System (ICRS) to describe the positions and motions of celestial bodies. WISE astrometry shall be mapped into the ICRS using the 2MASS AllSky Point Source Catalog as the primary astrometric reference.

1.1.2 Liens

- $3^{\text {rd }}$-order and $5^{\text {th }}$-order polynomial processing has not yet been implemented; this has been carried as a lien but is no longer considered so, since it now appears that a $3^{\text {rd }}$-order would be insufficient, and a $5^{\text {th }}$-order unnecessary.
- Error analysis for the skew parameter has not been performed formally; Monte Carlo studies have shown that its error is of the same order as the other parameters of the model, but since it is obtained iteratively and expected to be negligibly small given a reasonable amount of data to fit, a formal expression is currently considered not feasible.
- SIS's have not yet been written for any output files; the primary output, however, is in the format of the WSDC Calibration Meta-Data file and therefore does not need a separate SIS; the other files are all documented herein.

1.2 Applicable Documents

This subsystem conforms to the specifications in the following project documents:

- WISE Science Data Center Functional Requirements Document, WSDC D-R001
- WISE Science Data System Functional Design, WSDC D-D001
- Software Management Plan, WSDC D-M003
- PRex SDS, WSDC D-D003
- SIS describing the WCS and distortion representation http://web.ipac.caltech.edu/staff/fmasci/home/wise/SFPWrap01.txt
- Formalism deriving the representation and how it is coupled to the CD matrix http://web.ipac.caltech.edu/staff/fmasci/home/wise/codeVdist.html
- RvB SIS, WSDC D-I117
http://web.ipac.caltech.edu/staff/roc/wise/docs/sis/PRex_RvB.SIS

1.3 Acronyms

2MASS	Two-Micron All-Sky Survey
FRD	Functional Requirements Document
GnDSTR	Generate Distortion Model
PRex	Position Reconstruction
SDS	Subsystem Design Specification
SIS	Software Interface Specification
W1	WISE wavelength channel 1, 3.4 microns
W2	WISE wavelength channel 2, 4.6 microns
W3	WISE wavelength channel 3, 12 microns
W4	WISE wavelength channel 4, 22 microns

WISE	Wide-field Infrared Survey Explorer
WSDC	WISE Science Data Center
WSDS	WISE Science Data System

2 Input

2.1 Control Input

GnDSTR reads control input exclusively in the form of command-line parameters which are shown in its tutorial display:

2.2 Source Detections and Astrometric Reference Input

GnDSTR reads the list of RvB files contained in the "ListFile" specified via the "-l" commandline parameter. This file contains one file name per line, left-justified, case-sensitive, and containing any needed path information. The RvB files (see the SIS identified in section 1.2) contain matched pairs of 2MASS and WISE detections; the latter have positions that are not corrected for distortion, and so the description will be that of a full distortion correction.

3 Processing

3.1 Initialization

The GnDSTR module initializes itself by:
A.) reading and processing its control inputs;
B.) allocating memory for arrays needed for residuals analysis;
C.) setting up table-file names for case-insensitive I/O;
D.) initializing summations used in the chi-square minimization;
E.) opening the list file for I/O.

3.2 Polynomial Fitting

The GnDSTR module solves for the polynomial coefficients of a distortion model via chi-square minimization. The input data are positions and uncertainties of the matched pairs of WISE and 2MASS point sources read from the RvB files. The list of such files is read as though all the files were concatenated into one input source list which is read from top to bottom each time a pass through the iterative solution is performed. In practice, each RvB is separately opened and processed for table-file column information, but this is transparent to the fitting procedure, which sees only one stream of source data per iteration.

The form of the distortion model depends on the polynomial order, N (currently only the $4^{\text {th }}$ order model is implemented, and there is no intention to implement any other order). The two axes each have their own polynomial, and these are coupled later through the skew parameter. Forward and backward models are both computed; these are indicated as F2S (Frame-to-Sky) and S2F (Sky-to-Frame) models, i.e., conversion from distorted coordinates to undistorted coordinates and vice versa, respectively. Thus there are four equations whose coefficients must be computed, two F2S equations covering the "frame" X and Y axes, and two S2F equations covering the "sky" X and Y axes. The "sky" and "frame" coordinates are Cartesian systems corresponding to the same tangent projection but differing only in whether distortion operates. Each of the four equations has the same form but different coefficients. For illustration, we will consider only the F2S equation for X; the distortion on the frame X axis is denoted $d u$.

$$
\begin{equation*}
d u=\sum_{n=0}^{N} \sum_{k=0}^{n} a_{n k} X^{n-k} Y^{k} \tag{1}
\end{equation*}
$$

The coefficients are bookkept as single-index arrays in the code; for example, the $4^{\text {th }}$-order polynomial model has 15 coefficients per axis per conversion, A1(j) for F2S and A2(j) for

S2F, with j running from 1 to 15 for X and from 16 to 30 for Y, with a mapping between j and the powers of X and Y for $d u$ given by:

\underline{j}	\underline{k}	$\frac{n-k}{}$
1	0	0
2	1	0
3	2	0
4	3	0
5	4	0
6	0	1
7	1	1
8	2	1
9	3	1
10	0	2
11	1	2
12	2	2
13	0	3
14	1	3
15	0	4

The distortion on the Y axis is denoted $d v$, the polynomial has the same form, but the coefficients in the polynomial corresponding to Equation 1 are denoted $b_{n k}$, and the coefficient index mapping is given by adding 15 to each of the j values above. The S2F conversion uses a similar mapping for the A2 array. A $3^{\text {rd }}$-order polynomial (not implemented) would have 10 coefficients per axis per conversion, and a $5^{\text {th }}$-order polynomial (not implemented) would have 21.

Since X and Y can refer to axes in either sky or frame coordinates and to WISE detections or 2MASS sources, the following notation is used to keep the various combinations distinct:
$u: \quad X$ position of extraction in band frame (pixels, not corrected for distortion)
$v: \quad Y$ position of extraction in band frame (pixels, not corrected for distortion)
$d u: \quad$ distortion adjustment along X axis (pixels)
$d v$: distortion adjustment along Y axis (pixels)
$x r: \quad$ reference star undistorted position in band frame along X axis (pixels)
$y r: \quad$ reference star undistorted position in band frame along Y axis (pixels)
$x m: \quad$ distortion-corrected WISE star position in band frame along X axis (pixels)
$y m: \quad$ distortion-corrected WISE star position in band frame along Y axis (pixels)
β : skew angle, assumed to be small (rad)
The ($x r, y r$) coordinates are obtained by transforming the 2MASS celestial coordinates into bandframe pixel coordinates assuming no distortion exists, i.e., transforming according to frame center offsets, frame rotation, and scale factors only. If there were indeed no distortion, then these would be the expected coordinates for the matching WISE detection, (u, v). Correcting the latter for distortion yields ($x m, y m$), which then are the expected 2MASS coordinates. The
distortion correction has the following form, where skew is arbitrarily assigned to the Y axis (either axis can be used as long as skew is treated consistently throughout).

$$
\begin{align*}
& x m=u+d u \\
& y m=-\beta(u+d u)+(v+d v) \tag{2}
\end{align*}
$$

Because of source position errors in both 2MASS and WISE, ($x r, y r$) and ($x m, y m$) are generally not equal for each given matched pair of 2MASS/WISE sources. The $a_{n k}$ coefficients are determined via chi-square minimization of this discrepancy. For each matched pair, the position error covariance matrices are added to obtain the expected error covariance matrix for the difference, and this supplies the weights used in the chi-square minimization.

$$
\begin{align*}
& \left(\begin{array}{cc}
V_{x} & V_{x y} \\
V_{x y} & V_{y}
\end{array}\right)=\left(\begin{array}{ll}
V_{x} & V_{x y} \\
V_{x y} & V_{y}
\end{array}\right)_{2 \text { MASS }}+\left(\begin{array}{cc}
V_{x} & V_{x y} \\
V_{x y} & V_{y}
\end{array}\right)_{\text {WISE }} \tag{3}\\
& \left(\begin{array}{cc}
W_{x} & W_{x y} \\
W_{x y} & W_{y}
\end{array}\right)=\left(\begin{array}{cc}
V_{x} & V_{x y} \\
V_{x y} & V_{y}
\end{array}\right)^{-1}
\end{align*}
$$

The chi-square to be minimized is

$$
\begin{align*}
& \chi^{2}=\chi_{x}^{2}+\chi_{x y}^{2}+\chi_{y}^{2} \\
& \chi_{x}^{2} \equiv \sum W_{x}(x m-x r)^{2} \\
& \chi_{x y}^{2} \equiv 2 \sum W_{x y}(x m-x r)(y m-y r) \tag{4}\\
& \chi_{y}^{2} \equiv \sum W_{y}(y m-y r)^{2}
\end{align*}
$$

where the summations are taken over all matched pairs of 2MASS and WISE sources in the RvB input. The derivatives of chi-square with respect to $d u, d v$, and β are taken formally, using Maple. Since $d u$ and $d v$ are explicit functions of the $a_{n k}$ and $b_{n k}$ (as seen in Equation 1 for $d u$), derivatives of chi-square are actually taken with respect to the $a_{n k}$ and $b_{n k}$, and so the number of equations obtained is equal to the number of coefficients. This forms a linear system of equations for the $a_{n k}$ and $b_{n k}$ given any value of the skew. Including the skew derivative equation would result in a nonlinear system, and so instead, skew is obtained iteratively by assuming a value to be used in the linear system, which can be solved without iteration. Once the $a_{n k}$ and $b_{n k}$ have been obtained, they can be used in the skew derivative equation, which is set to zero, and a solution for β is obtained. This can be used in another solution of the linear system, after which another value for β is obtained, and this process can be repeated until the β value converges. In practice, it is found that the solution oscillates, and so a damped convergence is used, i.e., each iteration uses a value for β that is the average of the solutions for the two previous iterations. This has been found to converge to better than single precision in only a few iterations (for the $4^{\text {th }}$-order polynomial applied to a Code V model of the distortion). The skew is assumed to be zero for the first iteration.

After the first iteration has been performed, subsquent iterations can employ the estimates of the previous iteration to compute a chi-square contribution for each source pair, i.e., Equation 4 without the summation symbols. This yields a chi-square value with two degrees of freedom; this value must be less than the threshold ChSqMax (see "-c" in section 2.1). The default value is 8 , which implies that the expected fraction of the non-outlier population rejected as outliers is 1.83%. The number of data pairs retained and the overall reduced chi-square values for the F2S and S2F models are all computed and printed in the processing summary.

The equations making up the linear system are extremely unwieldy and will not be duplicated herein; the Maple worksheets and Fortran code are available upon request.

3.3 Uncertainties

As described in section 3.2 above, the $a_{n k}$ and $b_{n k}$ are evaluated via a standard chi-square minimization procedure assuming a current estimate of β. The linear system can be expressed in matrix form, where the matrix elements are the coefficients of the $a_{n k}$ and $b_{n k}$. The error covariance matrix for the estimated values of the $a_{n k}$ and $b_{n k}$ is the inverse of the coefficient matrix. Tests with Code V data showed what is normally to be expected, that the errors in the $a_{n k}$ and $b_{n k}$ estimates are strongly correlated. This means that a realistic estimate of the uncertainty of the distortion model needs to take the entire error covariance matrix into account.

This is usually not a problem, but in this case, the solutions for the $a_{n k}$ and $b_{n k}$ are just one step in an iterative procedure that includes solving for the skew angle, β. The error in β is therefore correlated to those of the $a_{n k}$ and $b_{n k}$, but the functional dependence is made extremely complicated by the iterative procedure. The actual errors in the distortion correction are expected to be small, and it is reasonable to expect that they may possibly be made negligible. For this reason, it is not cost effective to invest the large amount of resources in developing a formal error model that such a task would require. It was decided instead to develop an approximate error model via Monte Carlo analysis. This is described in section 5.2 below, where it is seen that the number of 2MASS/WISE matched sources needed to drive the expected error into negligibility is well within the expected size of this data set.

4 Output

4.1 Model Parameters Output File

An output table file of coefficients for the F2S and S2F distortion models is produced. the following is an example from a run using Code V data.
\ gnDSTR vsn 1.23 A80911 run on 23-09-08 at 10:44:57
\beta_F2S = 6.53766764E-09
\beta_S2F $=-6.33628835 \mathrm{E}-09$
\Num_iter = 15
\Poly_ord = 4
\Tol $=\quad 1.000 \mathrm{E}-09$
\Num_points = 2883
\Num_used = 2503
\ChSqMax $=8.000 \mathrm{E}+00$
\ChSqF2S $=1.442 \mathrm{E}+00$
\ChSqS2F $=1.443 \mathrm{E}+00$

1 A11 1.33116529E-05-1.31887706E-05
2 A12-1.42229420E-07 1.42618115E-07
3 A13 7.20222047E-11 -7.23060961E-11
4 A14 2.23501979E-13 -2.25074489E-13
5 A15-8.65382841E-16 8.61168975E-16
6 A21 -6.42685096E-04 6.46270984E-04
7 A22 -4.16811442E-06 4.16870242E-06
8 A23 -9.24317237E-12 -1.27979160E-11
9 A24 -1.21079032E-12 1.18906102E-12
10 A31 -1.11108016E-10 1.10138245E-10
11 A32 4.13450098E-13 -4.15677696E-13
12 A33 5.64735140E-16 -5.51788707E-16
13 A41 3.58534022E-09 -3.61333211E-09
14 A42 3.45699983E-12 -3.41888096E-12
15 A51 3.60851661E-18 -4.16869157E-18
16 B11 1.16207817E+00 -1.16259915E+00
17 B12 4.74842083E-04 -4.71178578E-04
18 B13 -2.92214918E-06 2.93712000E-06
19 B14 -2.74088961E-09 2.74091897E-09
20 B15 -9.27014334E-13 8.79645106E-13
21 B21 1.07071454E-08 -1.07717902E-08
22 B22 -1.38953839E-10 1.36623699E-10
23 B23 3.13401460E-14 -3.13127045E-14
24 B24 3.29727840E-16 -3.23232256E-16
25 B31 -9.04694997E-06 9.03926018E-06
26 B32 -4.06717274E-10 3.03056906E-10
27 B33 4.08381476E-12 -4.16301721E-12
28 B41 -7.76028201E-14 7.64986264E-14
29 B42 3.30987370E-16 -3.27928983E-16
30 B51 -1.29406944E-12 1.35728574E-12

4.2 Polynomial Parameter Error Covariance Matrix Output File

An outout table file containing the values of the error covariance matrix for the $a_{n k}$ estimates can be obtained via the "-u" command-line option (see section 2.1). An example is shown below.

This example is from a file containing 900 data rows for the 30×30 error covariance matrix corresponding to the $4^{\text {th }}$-order polynomial. The i and j columns give the coefficient number between 1 and 30 according to the mapping shown in section 3.2 above. For simplicity, no attempt is made to take of advantage of the matrix symmetry. The next two columns contain the sigma or co-sigma, as appropriate, for the coefficient(s) corresponding to the i and j combination for the F2s and S2F models, respectively, and the next two columns give the corresponding variances or covariances, respectively. The last two columns give the corresponding correlation coefficients, respectively.

4.3 Residuals Statistics Output File

An optional output table file of residuals to the model fit may be generated via the "-r" command-line specification (see section 2.1). An example is shown below.

\ gnDSTR	1.0 A8	run on	06-08	11:52				
\| Nused	xfe	yfe	xdstr	ydstr	du	dv	xresd	yresd
int	real							
1	-512.7442	-514.0885	-1.1936	-1.8819	-1.1941	-1.8837	-0.0005	-0.0018
2	-478.5083	-513.7827	-1.0614	-1.5761	-1.0616	-1.5773	-0.0002	-0.0012
3	-444.2832	-513.4972	-0.9391	-1.2906	-0.9400	-1.2918	-0.0009	-0.0012
4	-410.0684	-513.2324	-0.8279	-1.0258	-0.8286	-1.0272	-0.0007	-0.0014
5	-375.8631	-512.9883	-0.7263	-0.7817	-0.7266	-0.7836	-0.0003	-0.0019
6	-341.6662	-512.7667	-0.6322	-0.5601	-0.6332	-0.5609	-0.0010	-0.0008
7	-307.4773	-512.5649	-0.5470	-0.3583	-0.5476	-0.3594	-0.0006	-0.0011
8	-273.2951	-512.3848	-0.4686	-0.1782	-0.4690	-0.1789	-0.0004	-0.0007
9	-239.1199	-512.2253	-0.3959	-0.0187	-0.3967	-0.0196	-0.0008	-0.0009
10	-204.9503	-512.0875	-0.3301	0.1191	-0.3299	0.1185	0.0002	-0.0006
11	-170.7844	-511.9708	-0.2680	0.2358	-0.2678	0.2355	0.0002	-0.0003

This lists, for each source pair retained in the fit, its sequence number among retained pairs in the input stream, NUsed, the extraction coordinates in the band-frame system (xfe, yfe), the amount of distortion on each axis deduced by subtracting the 2MASS coordinates from the WISE coordinates (xdstr, ydstr), the corresponding model values (du, dv), and the residual differences between the observed and model distortion (xresd, yresd). Normally the latter would be typical of the position errors in the 2MASS and WISE sources, but in this example the individual residuals are much smaller because the data were simulated from a Code V model of the optical system, and hence here the individual residuals are a direct measure of the model accuracy. The X and Y residuals never reached 0.002 pixel in magnitude.

4.4 Residuals Image Output Files

A set of FITS images showing the distributions of various residual parameters as functions of array location is available via the "-rf" command-line option (see section 2.1). There are 18 images in the set, each by default a 31×31 image, i.e., the array is partitioned into 31 rows and 31 columns, and the residual parameters are averaged within each partition. The number of rows and columns may be controlled via the "-nf" command-line parameter. Each image has a suffix attached to the name specified by the user; the meanings are as follows, where "Img" represents the name specified by the user.

Img_XF2S.fits:	X of distortion-corrected WISE - 2MASS, F2S model
Img_YF2S.fits:	Y of distortion-corrected WISE - 2MASS, F2S model
Img_RF2S.fits:	Radial distance from distortion-corrected WISE to 2MASS, F2S model
Img_XS2F.fits:	X of distortion-corrected WISE - 2MASS, S2F model
Img_YS2F.fits:	Y of distortion-corrected WISE - 2MASS, S2F model
Img_RS2F.fits:	Radial distance from distortion-corrected WISE to 2MASS, S2F model
Img_XD.fits:	X distortion, extracted WISE - 2MASS
Img_YD.fits:	Y distortion, extracted WISE - 2MASS
Img_RD.fits:	Radial distortion, extracted WISE - 2MASS
Img_XF2Ssig.fits:	Dispersion about XF2S partition averages
Img_YF2Ssig.fits:	Dispersion about YF2S partition averages
Img_RF2Ssig.fits:	Dispersion about RF2S partition averages
Img_XS2Fsig.fits:	Dispersion about XS2F partition averages
Img_YS2Fsig.fits:	Dispersion about YS2F partition averages
Img_RS2Fsig.fits:	Dispersion about RX2F partition averages
Img_XDsig.fits:	Dispersion about XD partition averages
Img_YDsig.fits:	Dispersion about YD partition averages
Img_RDsig.fits:	Dispersion about RD partition averages
Img_N.fits:	Number of points averaged in partition

Some sample images from the Code V data are:

XD: X distortion

RD: Radial distortion

YS2F: Y residuals for S2F model

4.5 Calibration Meta-Data Output File

To support usage of the distortion model coefficients in the WSDC pipelines, gnDSTR optionally writes an ASCII text file containing the distortion information in the format used by the WSDC Calibration Meta-Data File, which is used by the ingest subsystem to prepare FITS files. This is now the most important gnDSTR output file and can be copied and pasted directly into the master Calibration Meta-Data File. An example is shown below; the coefficients are those computed for the Code V W1 model. It should be noted that the A_DMAX and B_DMAX parameter values are obtained as a by-product of the self-consistency check processing described in the next section, so that even if that output file is not requested, the grid density (see "-ns" in section 2.1) should be kept large enough to sample the array well for these maximum-magnitude corrections.

cal:gnd:distort_skew	1	SKEW	r	6.537668E-09	[rad] skew component of CD matrix
cal:gnd:distort_a_order	1	A_ORDER	i	- 4	polynomial order, axis 1, detector to sky
cal:gnd:distort_a_0_2	1	A_0_2	r	7.202220E-11	axis 1 distortion coefficient of v2
cal:gnd:distort_a_0_3	1	A_0_3	r	2.235020E-13	axis 1 distortion coefficient of v3
cal:gnd:distort_a_0_4	1	A_0_4	r	-8.653828E-16	axis 1 distortion coefficient of v4
cal:gnd:distort_a_1_1	1	A_1_1	r	-4.168114E-06	axis 1 distortion coefficient of u.v
cal:gnd:distort_a_1_2	1	A_1_2	r	-9.243172E-12	axis 1 distortion coefficient of u.v2
cal:gnd:distort_a_1_3	1	A_1_3	r	-1.210790E-12	axis 1 distortion coefficient of u.v3
cal:gnd:distort_a_2_0	1	A_2_0	r	-1.111080E-10	axis 1 distortion coefficient of u2
cal:gnd:distort_a_2_1	1	A_2_1	r	4.134501E-13	axis 1 distortion coefficient of u2.v
cal:gnd:distort_a_2_2	1	A_2_2	r	5.647351E-16	axis 1 distortion coefficient of u2.v2
cal:gnd:distort_a_3_0	1	A_3_0	r	3.585340E-09	axis 1 distortion coefficient of u3
cal:gnd:distort_a_3_1	1	A_3_1	r	$3.457000 \mathrm{E}-12$	axis 1 distortion coefficient of u2.v
cal:gnd:distort_a_4_0	1	A_4_0	r	3.585340E-09	axis 1 distortion coefficient of u4
cal:gnd:distort_a_dmax	1	A_DMAX	r	1.066	[pixel] axis 1 maximum correction
cal:gnd:distort_b_order	1	B_ORDER	i	4	polynomial order, axis 2, detector to sky
cal:gnd:distort_b_0_2	1	B_0_2	r	-2.922149E-06	axis 2 distortion coefficient of v2
cal:gnd:distort_b_0_3	1	B_0_3	r	-2.740890E-09	axis 2 distortion coefficient of v3
cal:gnd:distort_b_0_4	1	B_0_4	r	-9.270143E-13	axis 2 distortion coefficient of v4
cal:gnd:distort_b_1_1	1	B_1_1	r	-1.389538E-10	axis 2 distortion coefficient of u.v
cal:gnd:distort_b_1_2	1	B_1_2	r	$3.134015 \mathrm{E}-14$	axis 2 distortion coefficient of u.v2
cal:gnd:distort_b_1_3	1	B_1_3	r	$3.297278 \mathrm{E}-16$	axis 2 distortion coefficient of u.v3
cal:gnd:distort_b_2_0	1	B_2_0	r	-9.046950E-06	axis 2 distortion coefficient of u2
cal:gnd:distort_b_2_1	1	B_2_1	r	-4.067173E-10	axis 2 distortion coefficient of u2.v
cal:gnd:distort_b_2_2	1	B_2_2	r	$4.083815 \mathrm{E}-12$	axis 2 distortion coefficient of u2.v2
cal:gnd:distort_b_3_0	1	B_3_0	r	-7.760282E-14	axis 2 distortion coefficient of u3
cal:gnd:distort_b_3_1	1	B_3_1	r	$3.309874 \mathrm{E}-16$	axis 2 distortion coefficient of u2.v
cal:gnd:distort_b_4_0	1	B_4_0	r	-1.294069E-12	axis 2 distortion coefficient of u4
cal:gnd:distort_b_dmax	1	B_DMAX	r	1.967	[pixel] axis 2 maximum correction
cal:gnd:distort_ap_order	1	AP_ORDER	i	4	polynomial order, axis 1, sky to detector
cal:gnd:distort_ap_0_2	1	AP_0_2	r	-7.230610E-11	axis 1 distortion coefficient of V2
cal:gnd:distort_ap_0_3	1	AP_0_3	r	-2.250745E-13	axis 1 distortion coefficient of V3
cal:gnd:distort_ap_0_4	1	AP_0_4	r	8.611690E-16	axis 1 distortion coefficient of V4
cal:gnd:distort_ap_1_1	1	AP_1_1	r	4.168702E-06	axis 1 distortion coefficient of U.V
cal:gnd:distort_ap_1_2	1	AP_1_2	r	-1.279792E-11	axis 1 distortion coefficient of U.V2
cal:gnd:distort_ap_1_3	1	AP_1_3	r	$1.189061 \mathrm{E}-12$	axis 1 distortion coefficient of U.V3
cal:gnd:distort_ap_2_0	1	AP_2_0	r	1.101382E-10	axis 1 distortion coefficient of U2
cal:gnd:distort_ap_2_1	1	AP_2_1	r	-4.156777E-13	axis 1 distortion coefficient of U2.V
cal:gnd:distort_ap_2_2	1	AP_2_2	r	-5.517887E-16	axis 1 distortion coefficient of U2.V2
cal:gnd:distort_ap_3_0	1	AP_3_0	r	-3.613332E-09	axis 1 distortion coefficient of U3
cal:gnd:distort_ap_3_1	1	AP_3_1	r	-3.418881E-12	axis 1 distortion coefficient of U2.V
cal:gnd:distort_ap_4_0	1	AP_4_0	r	-3.613332E-09	axis 1 distortion coefficient of U4
cal:gnd:distort_bp_order	1	BP_ORDER	i	4	polynomial order, axis 2, sky to detector
cal:gnd:distort_bp_0_2	1	BP_0_2	r	2.937120E-06	axis 2 distortion coefficient of V2
cal:gnd:distort_bp_0_3	1	BP_0_3	r	2.740919E-09	axis 2 distortion coefficient of V3
cal:gnd:distort_bp_0_4	1	BP_0_4	r	8.796451E-13	axis 2 distortion coefficient of V4
cal:gnd:distort_bp_1_1	1	BP_1_1	r	1.366237E-10	axis 2 distortion coefficient of U.V
cal:gnd:distort_bp_1_2	1	BP_1_2	r	-3.131270E-14	axis 2 distortion coefficient of U.V2
cal:gnd:distort_bp_1_3	1	BP_1_3	r	-3.232323E-16	axis 2 distortion coefficient of U.V3
cal:gnd:distort_bp_2_0	1	BP_2_0	r	9.039260E-06	axis 2 distortion coefficient of U2
cal:gnd:distort_bp_2_1	1	BP_2_1	r	3.030569E-10	axis 2 distortion coefficient of U2.V
cal:gnd:distort_bp_2_2	1	BP_2_2	r	-4.163017E-12	axis 2 distortion coefficient of U2.V2
cal:gnd:distort_bp_3_0	1	BP_3_0	r	7.649863E-14	axis 2 distortion coefficient of U3
cal:gnd:distort_bp_3_1	1	BP_3_1	r	-3.279290E-16	axis 2 distortion coefficient of U2.V
cal:gnd:distort_bp_4_0	1	BP_4_0	r	1.357286E-12	axis 2 distortion coefficient of U4

4.6 Self-Consistency Check Output File

The gnDSTR module will optionally produce a self-consistency check table file that gives information about residuals from correcting a given pixel location for distortion (F2S) and then removing the correction (S 2 F) from the undistorted position. A grid of sample points is generated with Nssc points per axis (see "-ns" in section 2.1). The header shows the means and standard deviations for the residuals on each axis, and each data row provides a sample-point position in X and Y, the F2S corrections, the S2F displacements for the corrected position, and the original-minus-final coordinate differences. The beginning and ending portions of a sample are shown below; this is from the Code V W1 model.

\AvgDX $=1.232 \mathrm{E}-08$							
\SigDX $=1.310 \mathrm{E}-04$							
\AvgDY $=3.807 \mathrm{E}-06$							
\SigDY $=3.698 \mathrm{E}-04$							
X	Y	dXF2S	dYF2S	dXS2F	dYS2F	Xresid	Yresid
real							
-462.2727	-462.2727	-0.8443	-1.2192	0.8438	1.2181	-0.00049	-0.00110
-416.0455	-462.2727	-0.7263	-0.8746	0.7259	0.8733	-0.00039	-0.00130
-369.8182	-462.2727	-0.6189	-0.5699	0.6186	0.5686	-0.00029	-0.00133
-323.5909	-462.2727	-0.5209	-0.3039	0.5207	0.3026	-0.00021	-0.00125
-277.3636	-462.2727	-0.4312	-0.0755	0.4310	0.0744	-0.00014	-0.00109
-231.1364	-462.2727	-0.3485	0.1162	0.3484	-0.1171	-0.00008	-0.00089
-184.9091	-462.2727	-0.2717	0.2720	0.2717	-0.2726	-0.00005	-0.00068
-138.6818	-462.2727	-0.1997	0.3925	0.1996	-0.3930	-0.00002	-0.00049
-92.4545	-462.2727	-0.1311	0.4782	0.1311	-0.4785	-0.00001	-0.00034
-46.2273	-462.2727	-0.0650	0.5295	0.0650	-0.5297	-0.00000	-0.00024
0.0000	-462.2727	0.0000	0.5465	-0.0000	-0.5468	0.00000	-0.00021
46.2273	-462.2727	0.0650	0.5295	-0.0650	-0.5297	0.00000	-0.00024
92.4545	-462.2727	0.1312	0.4782	-0.1312	-0.4785	0.00001	-0.00034
138.6818	-462.2727	0.1997	0.3925	-0.1997	-0.3930	0.00002	-0.00049
184.9091	-462.2727	0.2718	0.2720	-0.2717	-0.2727	0.00005	-0.00068
231.1364	-462.2727	0.3486	0.1162	-0.3485	-0.1171	0.00008	-0.00089
277.3636	-462.2727	0.4312	-0.0755	-0.4311	0.0744	0.00014	-0.00109
323.5909	-462.2727	0.5209	-0.3039	-0.5207	0.3026	0.00021	-0.00125
369.8182	-462.2727	0.6189	-0.5699	-0.6186	0.5686	0.00029	-0.00133
416.0455	-462.2727	0.7263	-0.8746	-0.7259	0.8733	0.00039	-0.00130
462.2727	-462.2727	0.8443	-1.2192	-0.8438	1.2181	0.00049	-0.00110
-462.2727	462.2727	0.7320	-1.4020	-0.7318	1.4027	0.00017	0.00065
-416.0455	462.2727	0.7463	-1.0422	-0.7462	1.0431	0.00013	0.00089
-369.8182	462.2727	0.7330	-0.7238	-0.7330	0.7248	0.00003	0.00097
-323.5909	462.2727	0.6951	-0.4458	-0.6952	0.4467	-0.00007	0.00095
-277.3636	462.2727	0.6358	-0.2069	-0.6359	0.2078	-0.00016	0.00085
-231.1364	462.2727	0.5580	-0.0064	-0.5582	0.0071	-0.00022	0.00072
-184.9091	462.2727	0.4648	0.1566	-0.4650	-0.1560	-0.00024	0.00059
-138.6818	462.2727	0.3593	0.2827	-0.3596	-0.2823	-0.00022	0.00046
-92.4545	462.2727	0.2447	0.3725	-0.2448	-0.3721	-0.00017	0.00037
-46.2273	462.2727	0.1238	0.4262	-0.1239	-0.4259	-0.00009	0.00030
0.0000	462.2727	-0.0001	0.4440	0.0001	-0.4438	-0.00000	0.00028
46.2273	462.2727	-0.1239	0.4262	0.1240	-0.4259	0.00009	0.00030
92.4545	462.2727	-0.2448	0.3725	0.2449	-0.3721	0.00017	0.00037
138.6818	462.2727	-0.3594	0.2827	0.3597	-0.2823	0.00022	0.00046
184.9091	462.2727	-0.4649	0.1566	0.4651	-0.1560	0.00024	0.00059
231.1364	462.2727	-0.5580	-0.0064	0.5583	0.0071	0.00022	0.00072
277.3636	462.2727	-0.6358	-0.2069	0.6360	0.2078	0.00016	0.00085
323.5909	462.2727	-0.6952	-0.4458	0.6953	0.4467	0.00007	0.00095
369.8182	462.2727	-0.7331	-0.7238	0.7330	0.7248	-0.00003	0.00097
416.0455	462.2727	-0.7463	-1.0422	0.7462	1.0431	-0.00013	0.00089
462.2727	462.2727	-0.7320	-1.4020	0.7318	1.4027	-0.00017	0.00065

This example has Nscc $=21$, which is about right for checking self-consistency. However, when the purpose of the run is to produce a text file for the Calibration Meta-Data File (see section 4.5 above), a higher density should be used in order to sample A_DMAX and B_DMAX better; for such runs, the Self-Consistency Check output file should probably be omitted, since it would be very much larger than necessary for its own purpose.

5 Testing

5.1 Testing

Testing was performed with data generated for W1 with Code V. The data consisted of 961 ray traces at each of three scan-mirror position, center and both extremes. These scan-mirror positions were averaged and reformatted to look like 961 WISE/2MASS matched source pairs. There was no position error simulated for these sources, and so the residuals indicate the adequacy of the $4^{\text {th }}$-order polynomial for the distortion modeled by Code V. These residuals were always smaller in magnitude that 0.002 pixel on both axes. The distortion pattern for the averaged mirror position as a function of array location is shown in Figure 1 below, where the distortion dispacements are magnified relative to the plate scale by a factor of 15 , and the base points are the dots. The most extreme displacements are about 2 pixels.

Figure 1. Distortion offset pattern as a function of array location (W1, Code V, averaged mirror position); undistorted positions are shown as dots, and displacements are magnified by a factor of 15 .

5.2 Monte Carlo Analysis

Monte Carlo analysis was performed for the purpose of exploring the possibility of developing an approximate error model to replace the formal error model, because development of the latter would clearly not have been cost-effective given the extreme complications due to the partly decoupled iterative solution and the anticipated small error size. The Monte Carlo program generated a requested number of simulated WISE/2MASS source pairs in RvB format. Distortion could be added or not added to the WISE positions; if added, the $4^{\text {th }}$-order polynomial distortion model with skew was assumed, and the coefficients could be read in or defaulted to the Code V model for the averaged scan-mirror position. Running without distortion was used to verify proper simulation of position errors and to probe fitting distortion despite its absence.

2MASS position errors were taken to be 0.03 pixel on each axis. Multiple simulations were done for $30,100,1000,10000,100000$, and 1000000 source pairs and $0.1,0.2$ and 0.4 pixel 1 -sigma WISE position errors (0.3 pixel errors were interpolated for the tables below). Distortion correction errors were computed and averaged over the array for null true distortion and again for Code V distortion.

The following tables are gridded according to the same WISE position errors and number of source pairs as the above graphical representation of RMS radial fitting-error magnitude. They show the radial error of the distortion correction averaged over the array for the model computed for the corresponding number of source pairs and WISE position uncertainties. The radial error is computed by subtracting the correction given by the estimated model from that of the true model.

1- σ Radial Error in Distortion Correction Averaged Over the Array (Pixel; Null Distortion)

0.71090	0.18036	0.07090	0.02613	0.00781	0.00194
0.55784	0.15201	0.05212	0.01960	0.00612	0.00156
0.40479	0.12366	0.03334	0.01307	0.00443	0.00119
0.24049	0.07010	0.01636	0.00670	0.00199	0.00042

1- σ Radial Error in Distortion Correction Averaged Over the Array (Pixel; Code V Distortion)

1.53083	0.33140	0.06918	0.02099	0.00640	0.00288
1.02270	0.23142	0.05946	0.01596	0.00503	0.00213
0.51458	0.13144	0.04974	0.01094	0.00367	0.00138
0.35327	0.07586	0.01655	0.00500	0.00192	0.00078

For small numbers of source pairs, inaccurate models are obtained, even when there is no distortion simulated; these produce errors that dominate the source position errors. When more source pairs are used, the model becomes more accurate. For at least 100,000 source pairs, the model becomes about as accurate as that derived from Code V with no source position error included, i.e., on the order of 0.002 pixel. This amount of data shoud be easily attainable early in the mission, and therefore the relatively expensive bookkeeping of the error contributed by the distortion model is taken to be not cost effective; this error will be considered negligible compared to the other effects contributing to position error.

The values in each grid of the tables above are actually averages of three Monte Carlo runs made with the corresponding position errors and number of source pairs (except for the row for 0.3 pixel position error, which was later interpolated).

